

Copyright ©2004 EMC Corporation. All rights reserved.

Published February, 2004

EMC believes the information in this publication is accurate as of its publication date. However, the information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED "AS IS." EMC CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication require an applicable software license.

Trademark Information

EMC², EMC, CLARiiON, Navisphere, and PowerPath are registered trademarks and Access Logix, EMC ControlCenter, FLARE, MirrorView, SAN Copy, and SnapView are trademarks of EMC Corporation.

All other trademarks used herein are the property of their respective owners.

Regulatory Notices

Product Type(s): X1E+

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Testing was done with shielded cables. Therefore, in order to comply with the FCC regulations, you must use shielded cables with your installation. Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

This Class A digital apparatus complies with Canadian ICES-003

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada

Manufacturer's Declaration of Conformity - CE mark

This equipment has been tested and found to comply with the requirements of European Community Council Directives 89/336/EEC, 73/23/EEC, and 98/68/EEC relating to electromagnetic compatibility and product safety respectively.

This product complies with EN55022, CISPR22 and AS/NZS 3548 Class A.

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準に基づくクラスA情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。

警告使用者:

這是甲類的資訊產品,在居住的環境中使用時,可能會造成射頻干擾,在這種情況下,使用者會被要求採取某些適當的對策。

This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

기기의 명칭(모델명) : CX300

인증받은 자의 상호: EMC Corporation

제조년월일: 2004

제조자/제조국가: EMC Ireland

Contents

Preface		ix
Warnings an	nd Cautions	xiii
Chapter 1	About the CX300	
	Overview	1-2
	CX300 Components	1-3
	Midplane	
	Front Bezel	
	Disk Modules	1-7
Chapter 2	Installing a CX300	
	Requirements	2-2
	Site Requirements	
	Cabling Requirements	
	Addressing Requirements	
	Disk Requirements	
	Installing a DPE2 in a Cabinet	
	Warnings and Recommendations	
	Setting Up an Installed CX300 DPE2	
	Setting Enclosure Addresses	2-5
	Making Power Connections	
	Making Back-End Connections	2-9
	Make Management LAN Connections	
	CX300 Powerup and Initialization	2-14
	CX300 Powerdown	2-16
	Turning Off the Power	2-16

Chapter 3	Servicing and Upgrading a CX300	
	Monitoring CX300 Status	3-2
	Handling FRUs	
	Power Issues and FRUs	3-5
	Avoiding Electrostatic Discharge (ESD) Damage	3-6
	Emergency Procedures (Without an ESD Kit)	
	Precautions When Removing, Installing, or Storing FR	
	Replacing or Adding a Disk Module	3-9
	Replacing a Storage Processor (SP)	
	Replacing a Power Supply/System Cooling Module	3-17
Chapter 4	The Standby Power Supply (SPS)	
	About the SPS	4-2
Appendix A	Technical Specifications and Operating Limits	
	CX300 DPE2 Technical Specifications	A-2
	Size and Weight	
	Drive Type	
	Standards Certification and Compliance	
	Operating Limits	
	SPS Technical Specifications	
	SPS Operating Limits	A-9
Appendix B	Customer Support	
	Overview of Detecting and Resolving Problems	В-2
	Troubleshooting the Problem	
	Before Calling the Customer Support Center	
	Documenting the Problem	
	Reporting a New Problem	
	Sending Problem Documentation	B-7
Glossary		g-1
Indev		; 1

Figures

Figure

1-1	Model CX300 Disk Processor Enclosure (DPE2) 1-2
1-2	CX300 DPE2 Front LED Display 1-4
1-3	CX300 DPE2 Rear View
1-4	CX300 DPE2 Enclosure Address Switch/Indicator 1-5
1-5	Disk Processor Enclosure Front Bezel 1-5
1-6	CX300 Storage Processor
1-7	Disk Module 1-7
1-8	Power Supply/System Cooling Module 1-8
1-9	Standby Power Supply 1-9
2-1	CX300 Enclosure Address Switch
2-2	ac Line Cord
2-3	Connecting CX300 Power Cords
2-4	Connecting Standby Power Supplies to SPs 2-8
2-5	CX300 Power Connections
2-6	Connecting a CX300 DPE2 to Another Disk Enclosure 2-10
2-7	Cabling a CX300 and Disk Enclosures Together 2-11
2-8	Attaching Fibre-Optic (Front-End) Cables to the SP
2-9	Connecting the CX300 to a Shared LAN 2-14
2-10	Connecting the CX300 to a Local Management Client 2-14
2-11	Powering Down
3-1	Enclosure and Disk Module Status Indicators (Front Bezel Removed) 3-2
3-2	Power Supply/System Cooling Module Status Indicators
3-3	SP Status Indicators
3-4	Unlocking and Removing the Front Bezel
3-5	Removing a Disk Filler Module
3-6	Removing a Disk Module
3-7	Installing a Disk or Filler Module
3-8	Installing and Locking the Front Bezel

3-9	Removing an SP	3-15
3-10	Installing an SP	3-16
3-11	Unplugging the ac Power Cord	3-17
3-12	Removing a Power/Cooling Module	3-18
3-13	Installing a Power/Cooling Module	3-19
3-14	Plugging in the Power Cord	3-20
4- 1	CX300 SPS Rear Panel	. 4-2
4-2	SPS Installation, Front and Rear Views	. 4-4
A-1	Typical SPS Self-Discharge Levels at Different Storage Temperatures	A-10
B-1	Problem Detection and Resolution Process	B-2

Preface

As part of an effort to improve and enhance the performance and capabilities of its product line, EMC from time to time releases revisions of its hardware and software. Therefore, some functions described in this guide may not be supported by all revisions of the software or hardware currently in use. For the most up-to-date information on product features, refer to your product release notes.

If a product does not function properly or does not function as described in this guide, please contact your EMC representative.

This guide is part of the EMC CLARiiON $^{\circledR}$ CX300 2-gigabit disk processor enclosure (DPE2) documentation set, and is intended for use by system administrators and other qualified technical personnel during installation, setup, and maintenance of the CX300 system.

Readers of this guide are expected to be familiar with basic computer hardware installation and field-replaceable unit (FRU) installation.

How This Manual Is Organized

Chapter 1	Introduces the CX300 DPE2 components.
Chapter 2	Explains requirements and describes how to cable the CX300 to the server and to other rackmounted disk enclosures.
Chapter 3	Describes how to replace FRUs such as disk modules, power supplies, and storage processors.
Chapter 4	Describes the standby power supply (SPS).

Appendix A Lists the CX300 technical specifications.

Appendix B Reviews the EMC process for detecting and

resolving software problems, and provides essential questions that you should answer before contacting the EMC Customer Support

Center.

Glossary Defines terms used in the documentation.

Related Documentation

40U Cabinet Setup Guide (P/N 014003099)

Site Preparation and Unpacking Guide for the 40U Cabinet (P/N 014003100)

EMC Rails and Enclosures Installation Guide for 19-Inch NEMA Cabinets (P/N 014003082)

EMC CLARiiON CX300, CX500, and CX700 Storage Systems Initialization Guide (P/N 300-001-272)

EMC 2-Gigabit Disk Enclosure (DAE2) Setup Guide (P/N 014003104)

EMC 2-Gigabit Disk Enclosure (DAE2) Hardware Reference (P/N 014003048)

EMC Navisphere Manager Revision 6.X Administrator's Guide (P/N 069001125)

EMC CLARiiON CX300, CX500, and CX700 Storage Systems Configuration Planning Guide (P/N 300-001-273)

EMC Navisphere Version 6.X Security Administrator's Guide (P/N 069001124)

EMC Installation Roadmap for CX-Series and FC-Series Storage Systems (P/N 069001166)

Conventions Used in This Manual

EMC uses the following conventions for notes, cautions, warnings, and danger notices.

A note presents information that is important, but not hazard-related.

CAUTION

A caution contains information essential to avoid damage to the system or equipment. The caution may apply to hardware or software.

WARNING

A warning contains information essential to avoid a hazard that can cause severe personal injury, death, or substantial property damage if you ignore the warning.

DANGER

- T-1

A danger notice contains information essential to avoid a hazard that will cause severe personal injury, death, or substantial property damage if you ignore the warning.

Typographical Conventions

This manual uses the following format conventions:

This typeface	Indicates text (including punctuation) that you type verbatim, all commands, pathnames, filenames, and directory names. It indicates the name of a dialog box, field in a dialog box, menu, menu option, or button.
This typeface	Represents variables for which you supply the values; for example, the name of a directory or file, your username or password, and explicit arguments to commands.
This typeface	Represents a system response (such as a message or prompt), a file or program listing.
x > y	Represents a menu path. For example, Operations > Poll All Storage Systems tells you to select Poll All Storage Systems on the Operations menu.
[]	Encloses optional entries.
	Separates alternative parameter values; for example: <i>LUN-name</i> <i>LUN-number</i> means you can use either the LUN-name or the LUN-number.

Finding Current Information

The most up-to-date information about the CX300 is posted on the EMC Powerlink website. We recommend that you download the latest information before you install or service your DPE2. If you purchased this product from an EMC reseller and you cannot access Powerlink, the latest product information should be available from your reseller.

To access EMC Powerlink, use the following link:

http://powerlink.emc.com

After you log in, select **Support > Document Library** and find the following:

- ◆ The FLARE[™] release notes
- The latest version of this reference.
- EMC Installation Roadmap for CX-Series and FC-Series Storage Systems, which provides a checklist of the tasks that you must complete to install your storage system in a storage area network (SAN) or direct attach configuration.

Where to Get Help

For questions about technical support, call your local sales office or service provider.

If you have a valid EMC service contract, contact EMC Customer Service at:

United States: (800) 782-4362 (SVC-4EMC) Canada: (800) 543-4782 (543-4SVC)

Worldwide: (508) 497-7901

Follow the voice menu prompts to open a service call and select the applicable product support.

Sales and Customer Service Contacts

For the list of EMC sales locations, please access the EMC home page at:

http://www.EMC.com/contact/

For additional information on the EMC products and services available to customers and partners, refer to the EMC Powerlink Web site at:

http://powerlink.EMC.com

Your Comments

Your suggestions will help us continue to improve the accuracy, organization, and overall quality of the user publications. Please send a message to techpub_comments@EMC.com with your opinions of this guide.

Warnings and Cautions

The following warnings and cautions pertain throughout this guide.

WARNING

Trained service personnel only.

Ground circuit continuity is vital for safe operation of the machine. Never operate the machine with grounding conductors disconnected. Remember to reconnect any grounding conductors removed for or during any installation procedure.

ATTENTION

Resérvé au personnel autorisé.

Un circuit de terre continu est essentiel en vue du fonctionnement sécuritaire de l'apareil. Ne jamais mettre l'appareil en marche lorsque le conducteur de mise a la terre est débranché.

WARNUNG

Nur für Fachpersonal.

STROMSTREUVERLUST: Gerät muss geerdet werden, bevor es am Stromnetz angeschlossen wird.

CAUTION

Trained personnel are advised to exercise great care at all times when working on the unit. Remember to:

- Remove rings, watches, or other jewelry and neckties before you begin any procedures.
- ◆ Use caution near any moving part and any part that may start unexpectedly such as fans, motors, solenoids, and so on.
- Always use the correct tools for the job.
- Always use the correct replacement parts.
- Keep all paperwork, including incident reports, up to date, complete, and accurate.

Static Precautions

EMC incorporates state-of-the-art technology in its designs, including the use of LSI and VLSI components. These chips are very susceptible to damage caused by static discharge and need to be handled accordingly.

CAUTION

Before handling printed-circuit boards or other parts containing LSI and/or VLSI components, observe the following precautions:

- Store all printed-circuit boards in antistatic bags.
- Use a ground strap whenever you handle a printed-circuit board.
- Unless specifically designed for nondisruptive replacement, never plug or unplug printed-circuit boards with the power on. Severe component damage may result.

Replacing the SP Battery

A lithium battery on the storage processor powers the real-time clock (RTC) for three to four years in the absence of power. Only trained personnel should change or replace this battery.

WARNING

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the equipment manufacturer. Discard used batteries according to manufacturer's instructions.

About the CX300

This chapter discusses the CX300 2-gigabit disk processor enclosure (DPE2). Major topics include

•	Overview	1-	-2	
•	CX300 Components	1-	-3	,

Overview

The CX300 2-gigabit disk processor enclosure (DPE2), shown in Figure 1-1, is an intelligent, highly available, high-performance, high-capacity disk-array storage system that uses a Fibre Channel Arbitrated Loop (FC-AL) or Fibre Channel Switch (FC-SW) as its interconnect interface. The enclosure is only 3U (5.25 inches) high, but can include 15 high-performance Fibre Channel hard disk drives. The CX300 system's modular, scalable design provides additional disk storage as your needs increase. The examples and illustrations in this manual show the rackmounted DPE2 in a standard 40U EMC cabinet.

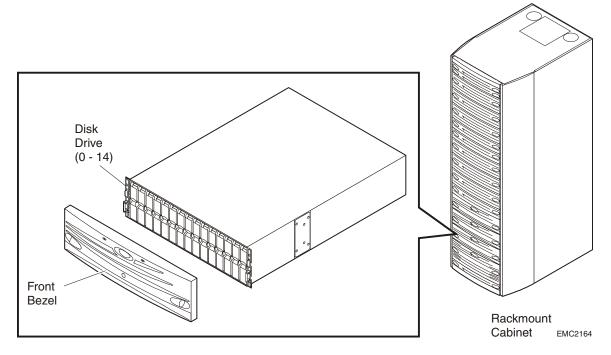


Figure 1-1 Model CX300 Disk Processor Enclosure (DPE2)

A CX300 can support as many as 3 additional disk-array enclosures (DAE2s, also called array modules). A DAE2 is a basic enclosure without a storage processor (SP) that includes either high-performance Fibre Channel or economical ATA disks. The CX300 and 3 additional DAE2s support up to 60 disk modules in a single disk-array storage system.

You can place the DAE2s in the same cabinet as the CX300, or in one or more separate cabinets. The CX300 connects to the external Fibre Channel environment using small form factor (SFF) LC optical transceivers on the storage processor. High-availability features are standard.

Storage Group features in the EMC Access Logix[™] software option allow you to connect the CX300 to multiple hosts that may be running different operating systems.

CX300 Components

The CX300 storage system includes

- ◆ A DPE2 consisting of:
 - A sheet-metal enclosure with a midplane and front bezel
 - Two storage processors (SPs)
 - 5 15 disk modules
 - Two power supply/system cooling modules

Blowers integrated in the power/cooling modules cool the entire enclosure. The CX300 does not require discrete fan assemblies.

• One or two standby power supplies (SPS)

Any unoccupied disk module slot has a filler module to maintain air flow.

The storage processors, disk modules, power supplies, and filler modules are field-replaceable units (FRUs), which you can add or replace without tools while the array is powered up.

The disk modules are FC-AL compliant and support dual-port FC-AL interconnections through the two SPs and their cabling.

The system can continue running in a degraded mode with one operating power supply and a single functioning SP. You should replace a failed FRU as soon as possible.

Figures 1-2 through 1-4 show the enclosure components. Where the enclosure provides slots for two identical components, the components are called *component-name* A or *component-name* B, as shown in the illustrations.

For increased clarity, the following figures depict the DPE2 outside of the rack cabinet. Your CX300 may be installed in a rackmount cabinet as shown in Figure 1-1.

As shown in Figure 1-2, the front LED display contains two status lights for each disk module, and two disk enclosure status lights. The status lights are visible with the front bezel installed.

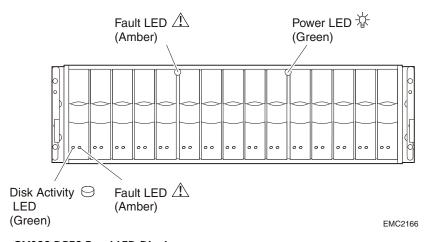


Figure 1-2 CX300 DPE2 Front LED Display

Figure 1-3 shows the DPE2 components visible from the rear of the cabinet.

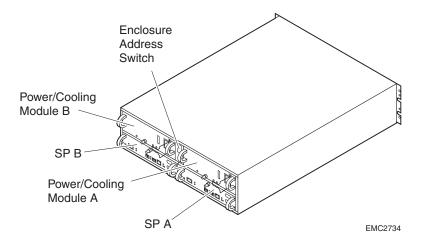


Figure 1-3 CX300 DPE2 Rear View

As shown in Figure 1-4, an enclosure ID, or *enclosure address*, switch is located between the power supplies at the rear of the disk enclosure.

The enclosure address for the CX300 DPE2 is always 0.

Figure 1-4 CX300 DPE2 Enclosure Address Switch/Indicator

The CX300 status lights are described in *Monitoring CX300 Status* on page 3-2.

Midplane

The midplane distributes power and signals to all the enclosure components. All FRUs plug directly into midplane connectors.

Front Bezel

The front bezel, shown in Figure 1-5, has a keylock, two latch release buttons, and an electromagnetic interference (EMI) shield. You can take off the bezel to remove and install drive modules, but EMI compliance requires a properly installed front bezel.

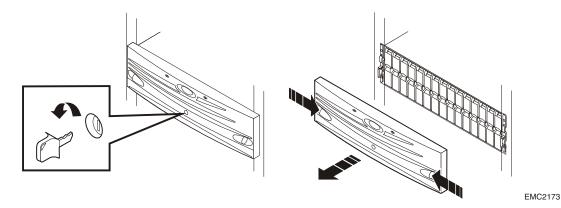


Figure 1-5 Disk Processor Enclosure Front Bezel

Storage Processors (SPs)

The SP is the CX300's intelligent component. It combines the functions of a typical storage processor circuit board and a disk enclosure link control card into a single module.

The CX300 SP includes a processor, 1gigbyte of DDR DIMM (double data rate, dual in-line memory module) memory, and the following ports:

- COM 1 serial port for service and initialization
- COM 2 serial SPS port for communication with the standby power supply
- Network port for storage-system management
- One high speed serial data connector (HSSDC) back-end (BE) port for the FC-AL loop to disks in a DAE2.
- Two fibre-optic front-end (FE) ports, for connecting to the external Fibre Channel environment (switch or host).

Figure 1-6 shows the SP front panel, with connectors and status LEDs.

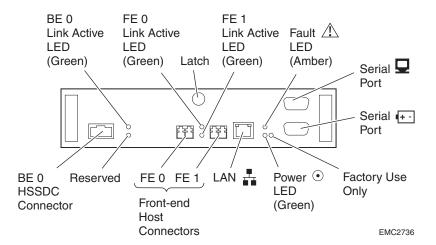


Figure 1-6 CX300 Storage Processor

The CX300 status lights are described in *Monitoring CX300 Status* on page 3-2.

The storage processor communicates with internal disks through the midplane. It connects to external link control cards (LCCs) and disks via two external FC-AL loops (busses). The SP-LCC interface is called the SP back end (BE).

When both SPs are installed, you can replace either one while the CX300 is running. You should never attempt to replace any of the SP's components.

Disk Modules

Each disk module, shown in Figure 1-7, consists of one 12-volt Fibre Channel disk drive in a carrier. You can add or remove a disk module while the CX300 is powered up, but you should exercise special care when removing drives while they are in use.

Drive modules are extremely sensitive electronic components. Refer to the instructions on *Handling FRUs* and *Replacing or Adding a Disk Module* in Chapter 3 whenever you handle a disk module.

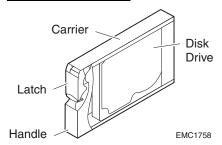


Figure 1-7 Disk Module

Disk Drives

The disk drives are 3.5-inch (8.75 cm) by 1.0-inch (2.54 cm) Fibre Channel drives that conform to the following standards:

- ◆ SFF-8045
- SCSI Enclosure Services (SES) portion of the SCSI 3 Standard
- ◆ FC-AL
- FC-AL Private Loop Direct Attach (PLDA) Profile
- 2 Gbit Fibre Channel interface
- 12 Volt only

Drive Carrier

The disk drive carrier is a metal and plastic assembly that provides smooth, reliable contact with the enclosure slot guides and midplane connectors. It has a handle with a latch and spring clips. The latch holds the disk module in place to ensure proper connection with the midplane. Disk drive Activity/Fault LEDs are integrated into the carrier.

Power Supply/System Cooling Modules

The power supply/system cooling (power/cooling) modules are located above the SPs. The units integrate independent power supply and dual-blower cooling assemblies into a single module.

Each power supply is an auto-ranging, power-factor-corrected, multi-output, off-line converter with its own line cord. Each supply supports a fully configured DPE2 and shares load currents with the other supply. The drives and SPs have individual soft-start switches that protect the disk drives and SPs if you install them while the disk enclosure is powered up. A FRU (disk, SP, or power/cooling module) with power-related faults will not adversely affect the operation of any other FRU.

The system cooling assembly includes two dual-blower modules. If one blower fails, the others will speed up to compensate. If two blowers in a system (both in one power/cooling module, or one in each module) fail, the CX300 will go off line within two minutes.

Each power/cooling module has visible status lights, as shown in Figure 1-8. The rightmost LED indicates power to the supply; the LED adjacent to it indicates a power supply fault. The leftmost LED indicates a failure in one of the integrated blowers within that module. The status lights are described in *Monitoring CX300 Status* on page 3-2.

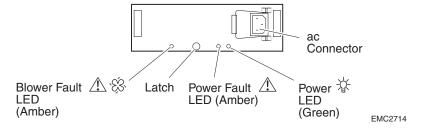


Figure 1-8 Power Supply/System Cooling Module

Standby Power Supply (SPS)

Disk configurations that use write caching require a standby power supply (SPS) to prevent data loss during a power failure. The SPS provides enough power for the storage processor to which it is connected to write the cache contents to disk. The standard CX-Series SPS supports a variety of processor and disk enclosures similar to the CX300 and DAE2. See Figure 1-9.

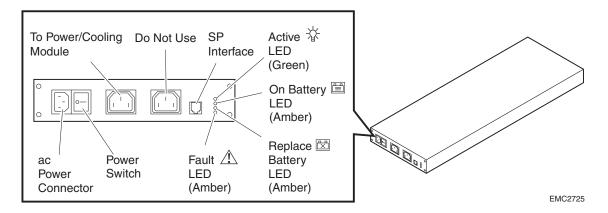


Figure 1-9 Standby Power Supply

See Chapter 4, *The Standby Power Supply (SPS)*, for detailed information about SPSs.

Installing a CX300

This chapter describes the Model CX300 DPE2 installation requirements and procedures. Major topics include

•	Requirements	2-2
	Installing a DPE2 in a Cabinet	
	Setting Up an Installed CX300 DPE2	
	CX300 Powerup and Initialization	
	CX300 Powerdown	

Requirements

This section explains site and cabling requirements.

Site Requirements

For proper operation, the installation site must conform to certain environmental specifications. These are detailed below and in Appendix A.

Power

To determine a CX300's power requirements, use the power rating on the enclosure label. This rating is the maximum power required for a fully loaded enclosure. The input current, power (VA), and dissipation per enclosure are based on the maximum capability of the power supplies and cooling system to provide internally regulated power. Typical values will be less than the maximum, depending on the number and manufacturer of disk drives. These values represent the sum of the values shared by the line cords of two power supplies in the same enclosure. Power cords and supplies share the power load evenly. If one of the two power supplies fails, the remaining supply and cord support the full load. You must use a rackmount cabinet with ac power distribution, and have main branch ac distribution that can handle these values for the number of components that you will interconnect.

The standard 40U EMC cabinet includes two 240-volt ac power cables and independent power distribution units (PDUs). To support all of the CX300 system's high-availability features, you must connect each power outlet to a different circuit.

Cooling

The temperature at the front bezel inlet must meet the ambient temperature specification described in Appendix A. The site must have air conditioning that can maintain the specified ambient temperature range. The air conditioning must be able to support the BTU requirements of the CX300 DPE2 and any additional disk enclosures.

Cabling Requirements

The CX300 DPE2 supports copper cable for *back-end* (BE) connections to disks it controls (for example, DAE2 disk enclosures) and optical cables for *front-end* (FE) connections to the external Fibre Channel environment.

Any copper cables you use must meet the appropriate standards for 2-Gbit FC-AL. Such cables must be fully shielded, twin-axial,

full-duplex cables with High Speed Serial Data Connector (HSSDC) connectors. Distances greater than 1 meter require equalized cables; unequalized 1-meter cables are adequate. The DPE2 does not support cables shorter than 1 meter or longer than 10 meters.

EMC supports and can provide 1-, 5-, and 10-meter cables. The 5- and 10-meter cables are equalized.

Interconnections between the CX300 and disk enclosures should maintain consistency with the link controller cards (LCCs) in the additional disk enclosures. For example, one Fibre Channel (FC) loop 0 should interconnect SP A to all the LCC As, and the redundant loop should interconnect SP B with all (and only) LCC Bs.

Do not leave an unused (that is dangling) cable connected to a host or enclosure port because it may cause excess noise on the loop.

Addressing Requirements

The CX300 SPs process *front-end* I/O from servers (hosts), and *back-end* communication between disks and the enclosures that contain them. Each host bus adapter, storage processor, and disk requires a unique identifier, or *address*.

- Front end (FE) addressing requirements vary depending on the environment. Fibre Channel *fabric*, (sometimes called *fibre port*) configurations include a Fibre Channel switch between the storage system and host bus adapters on connected servers. Fibre loop (FC-AL) front ends connect directly to a server.
 - In a fabric environment, the switch assigns a unique fabric ID to each host bus adapter (HBA) and storage processor. In direct-attach configurations, the HBA and SP negotiate a default arbitrated loop physical address (ALPA).
- ◆ The CX300 back end (BE) addresses each DPE2 and DAE2 using the FC-AL address (loop) ID and the DAE2 enclosure address (EA). You determine both the loop ID (sometimes called a *bus* ID) and the enclosure address during the hardware setup. The CX300 has a single loop ID (0) that corresponds to the BE port number on the SP; you specify enclosure addresses with a switch on each DPE2 and DAE2.

Enclosure Address (EA)

Each CX300 DPE2 and DAE2 on a back-end loop needs a unique enclosure address (EA) that identifies the enclosure and determines the disk ALPA addresses.

The CX300 DPE2 has a fixed EA of 0, which you should not change. The CX300 supports a single redundant loop and a maximum of 4 disk enclosures. For ease of use, we recommend that you keep the EAs sequential.

Disk Requirements

CX300 storage systems require at least five Fibre Channel disk modules installed in slots 0, 1, 2, 3 and 4 (the leftmost slots) of the enclosure. Disk module IDs are numbered left to right (facing the unit) and are contiguous throughout an array: enclosure 0 contains modules 0-14; enclosure 1 contains modules 15-29, and so on.

The disk modules in slots 0-4 provide recovery and mirrored boot capability and are preloaded according to their slot assignment before shipment. **Do not move a preloaded module** from its assigned slot to another slot. Remove it only to replace the disk.

For details on DAE2 disks and their configuration, refer to the EMC 2-Gigabit Disk Enclosure (DAE2) Hardware Reference.

Installing a DPE2 in a Cabinet

The CX300 mounts inside a cabinet on two L-shaped mounting rails connected to the cabinet's vertical channels.

- How to install the cabinet is explained in the cabinet installation manual that shipped with the cabinet.
- ◆ How to install the universal mounting rails in the cabinet, and the 3U chassis on those rails is explained in the EMC Rails and Enclosures Installation Guide for 19-Inch NEMA Cabinets available on the EMC Powerlink website.

Warnings and Recommendations

The cabinet in which you will install the CX300 must have a full earth ground to provide reliable grounding. Also, the cabinet should have its own switchable power distribution. We suggest that you use a cabinet that has dual power distribution units, one on each side.

WARNING

The enclosure is heavy and should be installed into a rack by two people. To avoid personal injury and/or damage to the equipment, do not attempt to lift and install the enclosure into a rack without a mechanical lift and/or help from another person.

L'armoire étant lourde, sa mise en place sur une rampe nécessite deux personnes. Afin de ne pas vous blesser et/ou endommager le matériel, n'essayez pas de soulever et d'installer l'armoire sur une rampe sans avoir recours à un relevage mécanique et/ou à l'aide d'une autre personne.

Das Gehäuse ist schwer und sollte nur von zwei Personen in einem Rack installiert werden. Zur Vermeidung von körperlichen Verletzungen und/oder der Beschädigung des Gerätes, bitte das Gehäuse nicht ohne die Hilfe einer zweiten Person anheben und einbauen.

Il contenitore è pesante e dev'essere installato nel rack da due persone. Per evitare danni personali elo all'apparecchiatura, non tentare di sollevare ed installare in un rack il contenitore senza un sollevatore meccanico elo l'aiuto di un'altra persona.

Debido a su considerable peso, la instalación del compartimento en el bastidor deben realizarla siempre dos personas. Para evitar daños personales o en el equipo, el compartimento no debe levantarse ni instalarse en el bastidor sin la ayuda de un elevador mecánico o de otra persona.

We recommend that you use cabinet anti-tip devices, especially if you are installing or removing a CX300 or DAE2 in the upper half of the cabinet when the lower half is empty.

Setting Up an Installed CX300 DPE2

CAUTION

Be sure the standby power supplies and circuit breakers in your cabinet are switched off before you begin setting up the CX300.

Setting Enclosure Addresses

Each disk enclosure in your system must have a unique enclosure ID (also called an enclosure address, or EA) that identifies the enclosure and determines disk module IDs. In most cases, the enclosure address has been set before shipment to coincide with the rest of the system; you need to reset the switch if you installed the enclosure into your rack independently. The EA can range from 0 through 7, though we recommend that you number them consecutively from 0. *The CX300 is always enclosure 0*. Additional DAE2 disk enclosures are numbered 1, 2, or 3 depending on their position on the Fibre Channel loop (bus) connecting the array. You set the EA with the enclosure address switch, which has one push button for incrementing the address and another for decrementing it. Use a pen, paper clip, or small screwdriver to set the EA as follows:

CAUTION

The drives read their FC-AL physical address only at powerup or when the drive is reset. To avoid losing data, you must set the EA when power is off; you cannot change the EA while power is on.

- 1. Make sure the enclosure address for the CX300 is set to 0. Refer to Figure 2-1.
- 2. Set the enclosure address for any additional disk enclosures.
 - Set the first DAE2 to EA 1.
 - Set the next DAE2 to EA 2, and the third to EA 3.

See Figure 2-1 and Figure 2-7 as necessary.

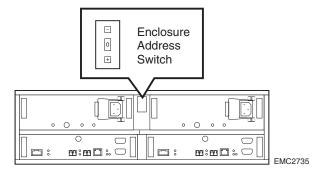


Figure 2-1 CX300 Enclosure Address Switch

Making Power Connections

Note that the CX300 uses retention bails to relieve strain on the power cords and to keep the cords seated in their connectors.

Refer to Figure 2-2 as you connect the ac line cord to the power supplies.

- 1. Plug an ac line cord into each power supply/system cooling module.
- 2. Release the retention bail from its slot on the power/cooling module, and push the bail loop over the power cord to hold the cord in position.

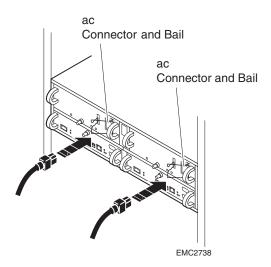


Figure 2-2 ac Line Cord

3. Plug the ac line cord from power supply/system cooling module (PS) A to the standby power supply (SPS). Plug the other end of the PS B power cord into the closest power strip. Whenever possible, connect the SPS and PS B to independent circuits. *Do not connect PS A and PS B to the same SPS*. Refer to Figure 2-3.

If your system includes two SPS, plug the power cords into the standby power supply that corresponds to each power supply/system cooling module (PS); for example, PS A to SPS A, PS B to SPS B.

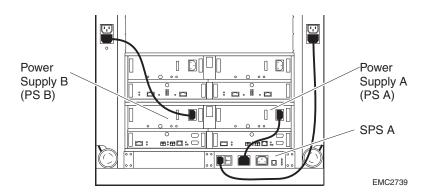


Figure 2-3 Connecting CX300 Power Cords

Make certain you secure the power cords with the retention bails (strain reliefs) at each connector. The strain reliefs prevent the power cord from pulling out of the connections.

4. Connect storage processor A to the serial port on SPS A, as shown in Figure 2-4. If you have two SPS, connect SP B to SPS B in the same manner.

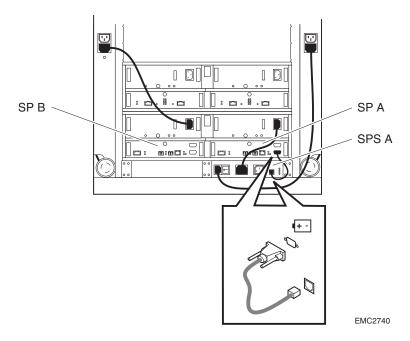


Figure 2-4 Connecting Standby Power Supplies to SPs

- 5. Connect DAE2s and other devices to the power strips in your cabinet. For high availability, connect dual power supplies in any component to separate power circuits (opposite strips in the cabinet).
- 6. Connect the SPS to a cabinet power strip. Note that in systems with two SPS, each SPS connects to a different power strip. For high availability, you must connect each power strip to a separate circuit.

Figure 2-5 shows typical power connections in a CX300 system.

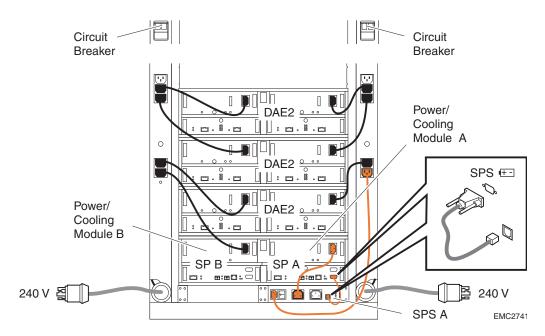


Figure 2-5 CX300 Power Connections

Making Back-End Connections

The CX300 supports a single redundant Fibre Channel back-end loop. The two independent loops from SP A and SP B are paired, and share access to the same dual-port disk drives.

Cable your back-end loop as follows:

1. Attach copper cables from the CX300 DPE2 to additional disk enclosures, as shown in Figure 2-6 and Figure 2-7.

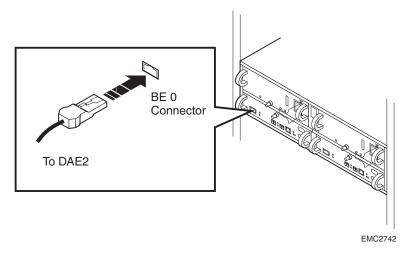


Figure 2-6 Connecting a CX300 DPE2 to Another Disk Enclosure

Connect BE 0 on each CX300 SP to the corresponding Primary (PRI) connector in the first additional disk enclosure (EA 1).

2. Cable the remaining disk enclosures together as shown in Figure 2-7.

The example configuration in Figure 2-7 shows a CX300 below three DAE2 disk-array enclosures. The four devices support a completely redundant loop. Note that the CX300 connects to the *Primary* disk enclosure connectors, and subsequent enclosures connect in an *Expansion*-to-Primary chain.

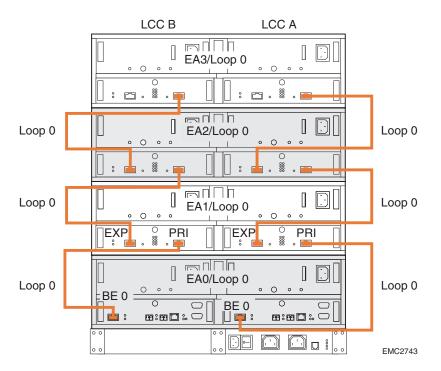


Figure 2-7 Cabling a CX300 and Disk Enclosures Together

Connecting the CX300 to the External Environment

When working with optical cables, observe the following precautions:

- Keep the covers on all optical cables and optical connectors until you are ready to insert the cables. The covers protect the cables and connectors, and prevent foreign particles, such as dust, from entering and affecting the connection.
- Do not leave any unused (dangling) cables connected to an SP port.
- Avoid tight bends. If you need to make a 90° bend, do it over 6 to 12 inches.
- Do not use optical cables to support weight, including long cable runs without support.
- Do not pull long runs of cable. It is best to lay the cable in place or pull only a few feet at a time.
- Run the cables so that they are not stepped on or rolled over by anything.

Follow the steps below to cable the SPs and connect them to the external environment:

- 1. Remove the protective covers from each optical connector and each optical cable, as shown in Figure 2-8.
- 2. Plug the cable into a host port on the SP. See Figure 2-8.

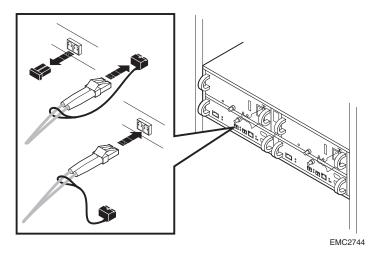


Figure 2-8 Attaching Fibre-Optic (Front-End) Cables to the SP

- 3. For each SP connection to the external environment, attach an optical cable from the front-end (FE) port to the external environment.
- 4. Plug the other end of each fibre-optic cable into the Host Bus Adapter (HBA) or switch port.

Make Management LAN Connections

Before you connect to a management local area network, refer to the Navisphere 6.X Release Notes for the version of the Java 2 Runtime Environment (JRE) and web browser required to manage your system. With the proper browser and JRE, you can manage a CX300 from any server that shares a LAN with your storage system's domain. (Note that the Navisphere Manager User Interface is required on at least one system in the domain.)

Connect each SP to the LAN from which you will run Navisphere management, as shown in Figure 2-9 or Figure 2-10.

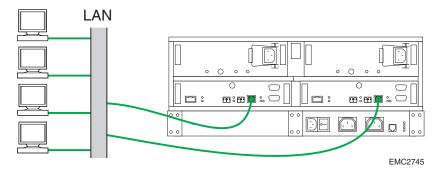


Figure 2-9 Connecting the CX300 to a Shared LAN

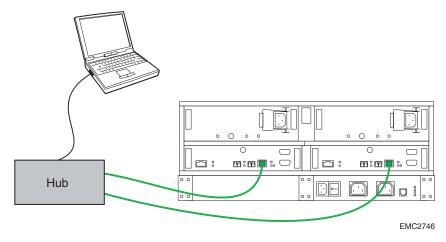


Figure 2-10 Connecting the CX300 to a Local Management Client

CX300 Powerup and Initialization

Before applying power to a storage system, make sure all the disk module slots in each disk enclosure contain either disk or filler modules, for proper cooling and normal operation.

Do not power up a disk enclosure without at least one SP or LCC installed.

Do the following to power up the CX300:

1. Connect power to all of the DAE2s connected to the CX300. If any of the DAE2s have power switches, turn them to the on position.

- 2. If present, turn the CX300's power/cooling module switches to the on (I) position.
- 3. Turn the SPS power switches to the on position.
- 4. In the cabinet, set the main circuit breaker switches to the on position.

The CX300 and any DAE2s in the cabinet will power up.

The only power switches on most CX300 and DAE2 disk enclosures are those on the standby power supply and the cabinet circuit breakers, which are normally *on*. (Power switches on those power/cooling modules that include them are usually in the on position as well.) As a result, the units are *always active*.

When you initially apply ac power to a disk enclosure, the disk drives power up according to their specifications, and spin up in a specified sequence dictated by enclosure and loop id. The slot spin-up delays range from 0 to 84 seconds. The slots use the same delays when you insert a drive while the system is powered up.

The CX300 hardware monitor (FRU monitor) resets and begins its control loop. The port bypass circuits enter the states indicated by their associated drives. The monitor continues to run in this local mode until it receives commands that dictate otherwise. In local mode, the monitor maintains the port bypass circuits in the same states as the drive command signals. When a drive fault occurs, the corresponding drive fault light turns on. Firmware commands can take control of the port bypass circuits and the drive status lights.

CAUTION

The drives read their FC-AL physical address only at powerup or when the drive is reset. To avoid potential data loss, you must set the enclosure address when you install the disk enclosure and power is off; you cannot change the EA while power is on.

For instructions on how to initialize your system after its first powerup, refer to the EMC CLARiiON CX300, CX500, and CX700 Storage Systems Initialization Guide and the EMC Installation Roadmap for CX-Series and FC-Series Storage Systems.

CX300 Powerdown

If a CX300 with an SPS is powered down abnormally (for example, a brownout or ac failure), cached data is saved to the storage-system vault disks, and not lost. However, when the CX300 is powered back up again, it may take longer to come on line.

Turning Off the Power

1. Stop all I/O activity to the CX300.

Stopping the I/O allows the SP to destage cache data, and may take some time. The length of time will be based on criteria such as the amount of cache, the amount of data in the cache, the type of data in the cache, and the target location on the disks, but it is typically less than one minute.

- 2. If the server connected to the CX300 is running the UNIX® operating system, unmount file systems.
- 3. Use the power switch on each SPS to turn off power to the CX300 DPE2 and any other device connected to the SPS. See Figure 2-11.
- 4. If power/cooling module B is not connected an SPS, unplug it from power distribution unit.

You do not need to turn of or disconnect power to the other connected DAE2s.

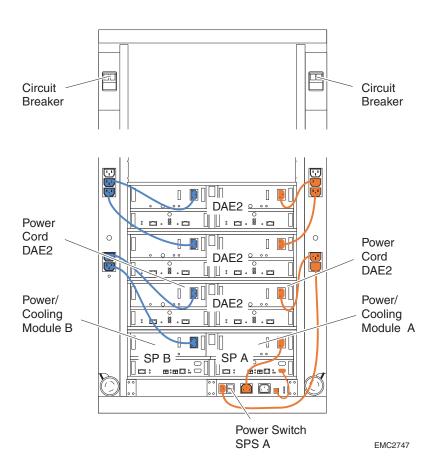


Figure 2-11 Powering Down

CAUTION

Never shut off or disconnect the power/cooling modules to shut down a CX300. Bypassing the SPS in that manner prevents the system from saving write cache data to the vault drives, and results in data loss. You will lose access to data, and the storage processor event log will display an error message similar to the following:

Enclosure 0 Disk 5 0x90a (Can't Assign - Cache Dirty) 0 0xafb40 0x14362c.

Contact your service provider if this situation occurs.

Servicing and Upgrading a CX300

This chapter describes how to monitor CX300 status, handle field-replaceable units (FRUs), and replace or add a FRU. Topics are

•	Monitoring CX300 Status	3-2
	Handling FRUs	
	Replacing or Adding a Disk Module	
	Replacing a Storage Processor (SP)	
	Replacing a Power Supply/System Cooling Module	

Monitoring CX300 Status

Status lights made up of light-emitting diodes (LEDs) on the CX300 and its FRUs indicate error conditions. These lights are visible from outside the enclosure, some from the front, and the others from the back. Figures 3-1 through 3-3 and Tables 3-1 through 3-2 describe the status lights.

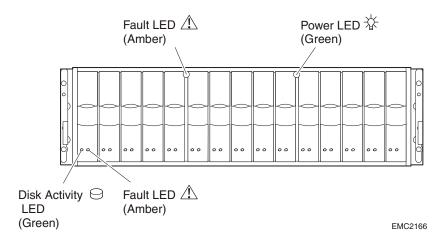


Figure 3-1 Enclosure and Disk Module Status Indicators (Front Bezel Removed)

Table 3-1 describes the lights visible from the front of the CX300 DPE.

Table 3-1	Status Lights	Visible from	the Front	of the	CX300

Light	Quantity	Color	Meaning
Enclosure Power	1	Green	Power to enclosure is ON.
Enclosure Fault	1	Amber	On when any fault condition exists; if the fault is not obvious from a disk module light, look at the back of the enclosure.
Disk Active	1 per disk module	Green	Off when the slot is empty or contains a filler module. Flashing (mostly off) when the drive is powered up but not spinning; this is a normal part of the spin-up sequence, occurring during the spin-up delay of a slot. Flashing (at a constant rate) when the disk drive is spinning up or spinning down normally. On when the drive is spinning but not handling any I/O activity (the ready state). Flashing (mostly on) when the disk drive is spinning and handling I/O activity.
Disk Fault	1 per disk module	Amber	On when the disk module is faulty, or as an indication to remove the drive.

Figure 3-2 shows the status LEDs for the power supplies.

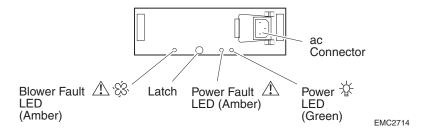


Figure 3-2 Power Supply/System Cooling Module Status Indicators

Figure 3-3 shows the status LEDs for the SP.

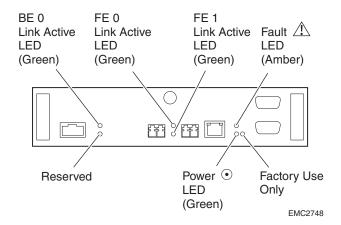


Figure 3-3 SP Status Indicators

Table 3-2 describes the status LEDs visible from the rear of the disk enclosure.

Table 3-2	Status Lights	Visible from	the Rear of	the Disk Enclosure
-----------	---------------	--------------	-------------	--------------------

Light	Quantity	Color	Meaning
SP Power	1 per SP	Green	On when the SP is powered up.
SP Fault	1 per SP	Amber	Flashing indicates: once/4 seconds — BIOS activity. once/second — POST activity. four/second — booting. six fast flashes, long pause — rewriting BIOS/POST: DO NOT REMOVE AN SP IN THIS STATE Steady indicates fault; refer to event log.
Link Active	4 per SP	Green	On when designated connection is active.
Power Supply Active	1 per supply	Green	On when the power supply is operating.
Power Supply Fault*	1 per supply	Amber	On when the power supply is faulty or is not receiving ac line voltage Flashing when either a multiple blower or ambient overtemperature condition has shut the dc power off to the system.
Blower Fault*	1 per cooling module	Amber	On when a single blower in the power/cooling module is faulty.

^{*} The CX300 will continue running with a single power supply and three of its four blowers. Removing a power/cooling module constitutes a multiple blower fault condition, and will power down the system unless you replace a blower within two minutes.

If the enclosure Fault light is on, examine the other status lights to determine which FRU(s) is faulty. If a Fault light on a FRU remains on, you should replace that FRU as soon as possible.

When a redundant FRU fails, high availability will be compromised until you replace the faulty FRU.

Handling FRUs

This section describes the precautions that you must take and the general procedures you must follow when removing, installing, and storing FRUs.

Power Issues and FRUs

The CX300 is designed to always be powered up and hot repairable. Its front bezel should be attached and each of its compartments should contain a FRU or filler panel to ensure EMI compliance and proper air flow over the FRUs.

While the CX300 is powered up, you can service or replace any FRU, although removing an active SP will affect operating-system access to the disks it controls. You should not remove a faulty FRU until you have a replacement available.

Since you can replace or add any FRU without sliding the enclosure out of the cabinet, you do *not* have to use cabinet anti-tip devices when you upgrade or service a CX300.

If you need to power down a CX300, first stop I/O to the storage processors. Shut off power to each SPS and then, if necessary, power/cooling module B. You do not need to shut down main ac lines to the disk enclosure unless you need to power down all the cabinet contents connected to that line.

CAUTION

Never shut off or disconnect an SPS- connected power/cooling module to shut down a CX300. Bypassing the SPS in that manner prevents the system from saving write cache data to the vault drives, and results in data loss. You lose access to data, and the storage processor event log displays an error message similar to the following:

Enclosure 0 Disk 5 0x90a (Can't Assign - Cache Dirty) 0 0xafb40 0x14362c.

Contact your service provider if this situation occurs.

Avoiding Electrostatic Discharge (ESD) Damage When you replace or install FRUs, you can inadvertently damage the sensitive electronic circuits in the equipment by simply touching them. Electrostatic charge that has accumulated on your body discharges through the circuits. If the air in the work area is very dry, running a humidifier in the work area will help decrease the risk of ESD damage. You must follow the procedures below to prevent damage to the equipment:

- Provide enough room to work on the equipment. Clear the work site of any unnecessary materials or materials that naturally build up electrostatic charge, such as foam packaging, foam cups, cellophane wrappers, and similar items.
- Do not remove replacement or upgrade FRUs from their antistatic packaging until you are ready to install them.

- Gather together the ESD kit and all other materials you will need before you service an enclosure. Once servicing begins, you should avoid moving away from the work site; otherwise, you may build up an electrostatic charge.
- Use the ESD kit when handling any FRU. If an emergency arises and the ESD kit is not available, follow the procedures in the Emergency Procedures (Without an ESD Kit) section.
- An ESD wristband is supplied with your storage system. To use
 it, attach the clip of the ESD wristband (strap) to any bare
 (unpainted) metal on the enclosure; then put the wristband
 around your wrist with the metal button against your skin.

Emergency Procedures (Without an ESD Kit)

In an *emergency* when an ESD kit is not available, use the following procedures to reduce the possibility of an electrostatic discharge by ensuring that your body and the subassembly are at the same electrostatic potential.

These procedures are not a substitute for the use of an ESD kit. Follow them only in the event of an emergency.

- Before touching any FRU, touch a bare (unpainted) metal surface of the cabinet or enclosure.
- Before removing any FRU from its antistatic bag, place one hand firmly on a bare metal surface of the enclosure, and at the same time, pick up the FRU while it is still sealed in the antistatic bag. Once you have done this, do not move around the room or contact other furnishings, personnel, or surfaces until you have installed the FRU.
- When you remove a FRU from the antistatic bag, avoid touching any electronic components and circuits on it.
- If you must move around the room or touch other surfaces before installing a FRU, first place the FRU back in the antistatic bag. When you are ready again to install the FRU, repeat these procedures.

Precautions When Removing, Installing, or Storing FRUs

Use the precautions listed below when you remove, handle, or store FRUs.

- Do not remove a faulty FRU until you have a replacement available.
- Handle a FRU only when using an ESD wristband as follows:
 - 1. attach the clip of the ESD wristband to the ESD bracket or bare metal on the enclosure
 - 2. then put the wristband around your wrist with the metal button against your skin.
- Handle FRUs gently. A sudden jar, drop, or vibration can permanently damage a FRU and may not be immediately evident. Never place a FRU on a hard surface such as an unpadded cart, floor, or desktop, or stacked on top of another FRU.
- Never use excessive force to remove or install a FRU.
- Store a FRU in the antistatic bag and specially designed shipping container in which you received it. Use that container if you need to return the FRU for repair.
- Maintain the location where you store FRUs within the limits specified in Appendix A.
- Place the cables where no one can step on them or roll equipment over them.

Replacing or Adding a Disk Module

CAUTION

Disk modules are extremely sensitive electronic components. Always handle a disk module gently, and observe the following guidelines:

- ◆ Follow the instructions in the preceding section Avoiding Electrostatic Discharge (ESD) Damage on page 3-6.
- Always wear a properly attached ESD wristband when removing or replacing a disk module.
- When removing a disk module, pull the module part way out of the slot, then wait 30 seconds for the drive to spin down before removing it.
- When installing multiple disks in a powered up system, wait at least 6 seconds before sliding the next disk into position.
- Place modules on a soft, antistatic surface, such as an industry-standard antistatic foam pad or the container used to ship the module. Never place a disk module directly on a hard surface.
- Never hit modules, stack modules, or allow them to tip over or fall.
- Avoid touching any exposed electronic components and circuits on the disk module.
- ◆ Before adding more disks to your DPE2, refer to the EMC CLARiiON® CX300, CX500, and CX700 Storage System Configuration Planning Guide, which contains guidelines for creating RAID groups with disks of varying sizes and speeds.
- ◆ Do not remove a faulty disk module until you have a replacement module (with the same part number) or a filler module available. The part number (PN005xxxxxx) appears on the top or bottom of the module. A replacement disk module should have the same format (bytes per sector) and the same capacity (size and speed) as the module it is replacing.

Unlocking and Removing the Front Bezel

You must remove the DPE2 front bezel to gain access to the disk modules. The bezel is required for EMI compliance when the enclosure is powered up. Remove it only to replace or add a disk module.

Refer to Figure 3-4 as you follow these steps to remove the front bezel and gain access to the disk modules.

- 1. Insert the key that shipped with your enclosure into the bezel lock, and turn it to release the lock.
- 2. Press the two latch buttons on the bezel surface toward each other to release the bezel from the cabinet.
- 3. Pull the bezel off the cabinet and put it on a clean, static-free surface.

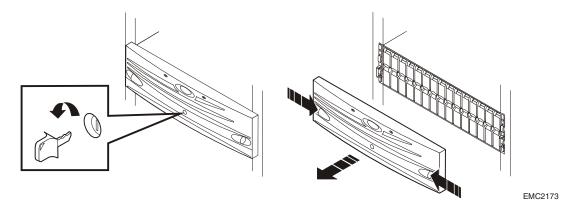


Figure 3-4 Unlocking and Removing the Front Bezel

If you are adding a new disk module, continue to the disk filler module removal procedure that follows. If you are replacing a faulty disk module, proceed to the disk module removal procedure.

Removing a Disk Filler Module

Locate the slot where you want to install the disk module, and remove the filler module, as shown in Figure 3-5.

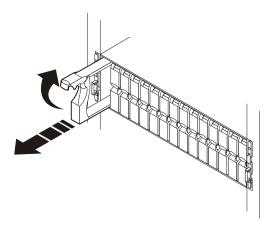


Figure 3-5 Removing a Disk Filler Module

Skip to the disk installation procedure (page 3-12) to install the add-on disk in the slot you just emptied.

Removing a Disk Module

CAUTION

If a disk module has been bound into a LUN, do not move it to another slot unless you do not care about the data on the LUN. Each module has LUN identifying information written when it is bound. Moving it to another slot can make information on the original LUN inaccessible.

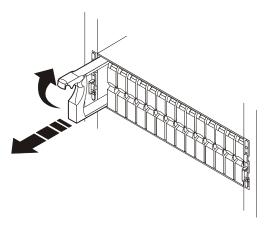
The disk modules in slots 0-4 provide recovery and mirrored boot capability and are preloaded according to their slot assignment before shipment. Do not move a preloaded module from its assigned slot to another slot, and remove it only to replace the disk.

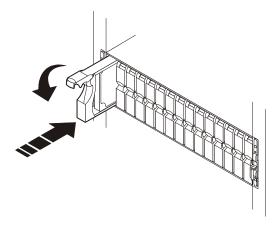
Generally, you should not remove a disk module unless its amber fault light is on. See Table 3-1.

EMC2210

- 1. Attach an ESD wristband to your wrist and the enclosure (see the precautions on page 3-7).
- 2. If the active light is on steadily, pull the latch, and slowly pull the module about 1 in (3 cm) from its slot. Wait 30 seconds for the disk to stop spinning. Then remove the module as shown in Figure 3-6. Place it on a padded, static-free surface.

If the active light is off or mostly off you do not need to wait for the disk to stop spinning. Pull the latch and slowly pull the module from its slot, as shown in Figure 3-6. Place it on a padded, static-free surface.




Figure 3-6 Removing a Disk Module

Continue to the next section to install the replacement disk module.

EMC2210

Installing a Disk or Filler Module

- 1. Make sure an ESD wristband is attached to your wrist and the enclosure (see the precautions on page 3-7).
- 2. Align the module with the guides in the slot.
- 3. *Gently* push the module completely into the slot, and then engage the latch. See Figure 3-7.

EMC2211

Figure 3-7 Installing a Disk or Filler Module

The disk module's Active light flashes to reflect the disk's spin-up sequence.

If you are installing multiple disks in a system that is powered up, wait at least 6 seconds before sliding the next disk into position.

4. Remove and store the ESD wristband and continue to the next section to install the front bezel.

Installing and Locking the Front Bezel

Refer to Figure 3-8 as you do the following:

- 1. Align the bezel with the disk enclosure.
- 2. Gently push the bezel into place on the cabinet until it latches.
- 3. Secure the bezel by turning the key in the lock.

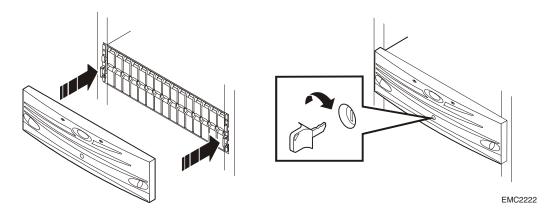


Figure 3-8 Installing and Locking the Front Bezel

Replacing a Storage Processor (SP)

CAUTION

Handle an SP gently and use an ESD wristband. Do not remove a faulty SP until you have a replacement module available.

A CX300 disk enclosure must have at least one SP installed while it is powered up. Do not remove both SPs while the disk enclosure is powered up.

Removing an SP

1. Gently release the connectors as you remove the optical, copper, LAN, and SPS cables connected to the SP.

Note where the cable(s) connect to the SP. You will need to reconnect them correctly to the replacement SP.

2. Turn the latch counterclockwise to release the module, and then remove the SP from its slot, as shown in Figure 3-9.

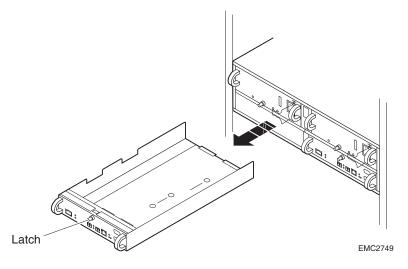


Figure 3-9 Removing an SP

Installing an SP

1. *Gently* insert the SP as shown in Figure 3-10. Be sure the module is completely seated in the CX300 midplane.

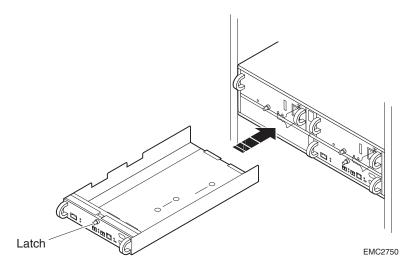


Figure 3-10 Installing an SP

The SP Power light turns on.

CAUTION

Depending on its state and configuration, your system may take several minutes to boot and integrate the new SP. Monitor the process patiently; pay particular attention to the SP fault LED codes described in Table 3-2 on page 3-5.

2. Turn the latch clockwise to secure the module.

The CX300 SP latch holds the module in an established position. It does not pull or otherwise help to seat the SP.

- 3. Reattach the cables to the new SP.
- 4. Remove and store the ESD wristband.

Replacing a Power Supply/System Cooling Module

CAUTION

Handle a power supply/system cooling (power/cooling) module gently and use an ESD wristband. Do not remove a power/cooling module until you have a replacement module available.

Access to the disks in your enclosure will time out and the disks will spin down two minutes after you remove a power/cooling module from the system. While the CX300 can continue operating on a single power supply, the loss of a module's two blowers will cause a time-out unless you replace the module within two minutes.

When replacing a power/cooling module, make certain the green LED on one module has been steadily on for at least 5 seconds before removing power from the second module.

If the power/cooling module includes a power switch, turn the switch to the off position before unplugging the power cord from the module or cabinet power strip.

Removing a Power/Cooling Module

Follow these steps to replace a power/cooling module.

1. Turn any module power switch to off, then release the retention bail and unplug the ac line cord as shown in Figure 3-11.

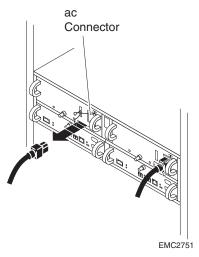


Figure 3-11 Unplugging the ac Power Cord

To protect a running system from overheating, the enclosure will time out unless you replace the power/cooling module within two minutes.

2. Turn the latch counterclockwise to release the module, and then remove it as shown in Figure 3-12.

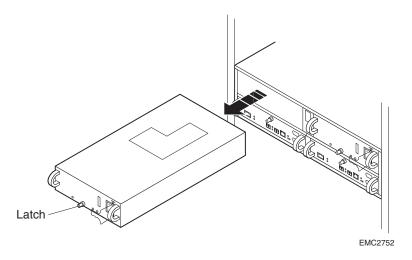


Figure 3-12 Removing a Power/Cooling Module

Continue to the next section to install the replacement module.

Installing a Power/Cooling Module

1. *Gently* insert the new module into the enclosure, as shown in Figure 3-13. Be sure the module is completely seated.

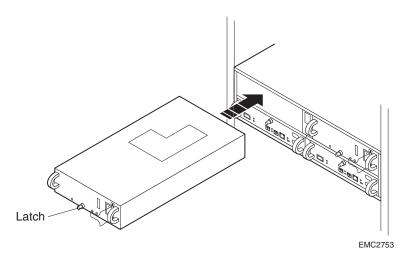


Figure 3-13 Installing a Power/Cooling Module

2. Turn the latch clockwise to secure the module.

The latch holds the power/cooling module in an established position. It does not pull or otherwise help to seat the module.

3. Make sure any power switch on the replacement module is off before you plug the ac power cord into the new supply. Attach the wire retention bail for strain relief. See Figure 3-14. Turn a power switch to the on position after you plug in the power cord.

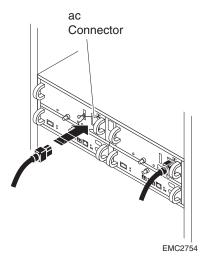


Figure 3-14 Plugging in the Power Cord

The Standby Power Supply (SPS)

The standby power supply (SPS) provides backup power required to protect the integrity of the CX300's storage processor write cache. This chapter describes the CX300 SPS and how to determine SPS status.

For instructions on installing or replacing an SPS, refer to the EMC Rails and Enclosures Installation Guide for 19-Inch NEMA Cabinets.

IMPORTANT: The SPS is intended to provide backup power for DAE2 and CX-Series enclosures only.

About the SPS

One 1000-watt dc SPSs provides backup power for CX300 storage processor (SP) A. An optional second SPS does the same for SP B. The two SPSs provide higher availability, but either allows write caching — which prevents data loss during a power failure — to continue. A faulted or not fully charged SPS disables write caching on its attached storage processor.

Each SPS rear panel has one ac inlet power connector with power switch, an ac outlet for the CX300, another ac outlet which you should not use in CX300 configurations, one data connector to the storage processor, and status lights (LEDs).

IMPORTANT: Improper storage and handling of an SPS will render the warranty null and void. Please see Appendix A for appropriate SPS storage requirements.

Figure 4-1 shows the SPS unit, removed from its cabinet mounting.

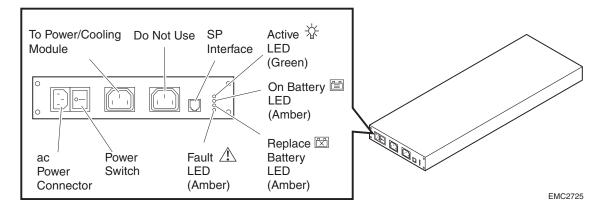


Figure 4-1 CX300 SPS Rear Panel

See Table 4-1 for the meanings of the SPS status LEDs.

Table 4-1 SPS Status LEDs

Light	Meaning When Lit
SPS fault - Amber	The SPS has an internal fault. The SPS may still be able to run online, but write caching cannot occur. Replace the SPS as soon as possible.
Replace battery - Amber	The SPS battery pack can no longer support loads. When the battery reaches this state, and no other online SPS is connected to the CX300, the processor flushes all cache data to disk and disables caching. This LED stays active until the SPS completes a successful power test. Replace the SPS as soon as possible.
On battery - Amber	The ac line power is no longer available and the SPS is supplying dc output power from its battery. When battery power comes on, and no other online SPS is connected to the CX300, the processor writes all cached data to disk; and the event log records the event.
Active - Green	When this LED is steady, the SPS is ready and operating normally. When this LED blinks, the SPS is charging. In either case, ac line input supplies the output from the SPS.

SPS units fit in a tray beneath the CX300 to which they connect. Figure 4-2 shows two SPS in a cabinet with a CX300.

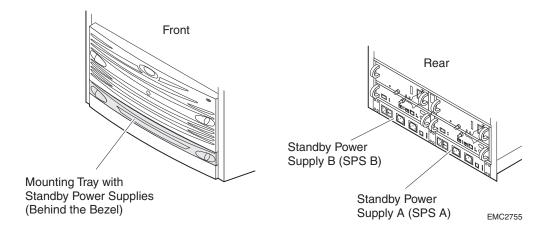


Figure 4-2 SPS Installation, Front and Rear Views

In the event of a power failure, an SPS provides backup power until the storage processor has flushed its write cache data to the CX300 disks. The storage processor then shuts the SPS power off. If the cache flush has not completed within 90 seconds — more than enough time to flush a full cache — or if the storage processor has failed, then the SPS shuts itself down to prevent deep discharge. If there is no ac inlet power and the SPS is shut down, all status lights will be off.

When power returns, the SPS starts recharging. It may reach a state of full charge relatively quickly. If power remains off for a long period — days or weeks — the battery may require more time to charge fully. The storage processor will not use the write cache unless it detects at least one fully charged SPS.

Battery lifetime depends on the number of discharge cycles and depth of discharge. In a typical environment, a battery pack can last 3 to 5 years. Battery pack lifetime is shorter in locations that have frequent ac outages.

Each SPS performs a weekly self-test during which SP cache is dumped to disk.

A

Technical Specifications and Operating Limits

This appendix describes the disk processor enclosure technical specifications, operating limits, and shipping and storage requirements. Major topics are

•	CX300 DPE2 Technical Specifications	.A-2
	Standards Certification and Compliance	
	Operating Limits	
	SPS Technical Specifications	

CX300 DPE2 Technical Specifications

Technical specifications include power requirements, size, drive, interface, and standards information.

ac Power Requirements

The input current, power (VA), and dissipation per CX300 DPE2 are based on the maximum capability of the power supplies and cooling system to provide internal regulated power. Typical values will be less, depending on the number and manufacturer of disk modules. These values represent either

- the values for a single power supply line cord, or
- the sum of the values shared by the line cords of two power supplies in the same enclosure, with the division between the line cords and supplies at the current sharing ratio (approximately 50% each).

A failure of one of the two power supplies in the DPE2 results in the remaining supply and cord supporting the full load. You must use a rackmount cabinet with ac power distribution, and have main branch ac distribution that can handle these values for each CX300 in the cabinet.

Requirement	Description
ac line voltage	100 to 240 V ac ± 10%, single phase, 47 to 63 Hz
ac line current	5.9 A at 100 V ac, 2.9 A at 200 V ac
Power consumption	590 VA (578 W) max (fully configured)*
Power factor	0.98 min at full load, low voltage
Heat dissipation	2.08 10 ⁶ J/hr (1,975 BTU/hr) max *
In-rush current	25 A max for 1/2 line cycle, per power supply at 240 V ac 15 A max for 1/2 line cycle, per power supply at 120 V ac
Startup surge current	15 Apk (10.6 Arms) max for 100 ms, at any line voltage
ac protection	10 A fuse in each power supply, both phases
ac receptacle type	IEC320-C14 appliance coupler, per power supply
Ride-through time	30 ms min
Current sharing	60% max, 40% min, between power supplies

^{*} A fully configured DPE2 includes 2 power supplies, 2 SPs, and 15 disk drives.

Size and Weight

Measurement	CX300 DPE2	SPS	DAE2
Height 133.35 mm (5.25 in) 3 NEMA units including mounting hardware		4.02 cm (1.58 in) 1 U, including mounting rails	133.35 mm (5.25 in) 3 NEMA units including mounting hardware
Width	450 mm (17.72 in)	20.96 cm (8.25 in) each	450 mm (17.72 in)
Depth	603.25 mm (23.75 in)	60.33 cm (23.75 in)	603.25 mm (23.75 in)
Weight	44.5 kg (98.3 lbs) maximum configuration 1.1 kg (2.4 lbs) per disk module 1.7 kg (3.8 lbs) per storage processor 4.1 kg (9 lbs) per power supply 12.7 kg (28 lbs) chassis and midplane	10.7 kg (23.65 lbs) each 4.5 kg (9.85 lbs) tray 25.9 kg (57.15 lbs) max total (2 SPS)	43.2 kg (95.3 lbs) with rails (fully configured)

Drive Type

Fibre Channel interface disk drives used in CX300 enclosures are

- 8.75 cm (3.5 inches) tall
- 2.54 cm (1.0 inch) wide
- ◆ 12 Volt only

Drive module power is 16 W maximum per drive slot.

DPE2 FC-AL Interface

Connector - shielded HSSDC (High Speed Serial Data Connector).

Copper Cabling

The expansion port interface to the DPE2 is copper cable.

Type:	Shielded, 150 $\!\Omega$ differential, shield bonded to HSSDC plug connector shell (360°) FC-PI Standard, Revision 13 or higher
Length:	1 meter (3.3 feet) unequalized; 5 meters (16.5 feet) and 10 meters (33 feet) equalized

Storage Processor Optical Cabling

The CX300 uses optical cable from the SP's SFF (Small Form Factor) LC transceivers to the external Fibre Channel environment.

Туре			50 μm or 62.5 μm, multi-mode, dual LC
Length	50 μm	1.0625 Gbit	2 m (6.6 ft) minimum to 500 m (1,650 ft) maximum
Lengui	ου μπ	2.125 Gbit	2 m (6.6 ft) min to 300 m (985 ft) maximum
Longth	62 5 um	1.0625 Gbit	2 m (6.6 ft) min to 300 m (985 ft) maximum
Length	Length 62.5 μm 2.125 Gbit	2.125 Gbit	2 m (6.6 ft) min to 150 m (492 ft) maximum
Bend Radius		•	3 cm (1.2 in) min

The maximum length when using either the $62.5~\mu m$ or $50~\mu m$ cable (noted in the table above) includes two connections or splices between the source and destination. For a detailed overview of cable types, connections, and lengths, refer to the EMC CLARiiON CX300, CX500, and CX700 Storage Systems Configuration Planning Guide.

CAUTION

EMC does not recommend mixing 62.5 μ m and 50 μ m optical cables in the same link. In certain situations you can add a 50 μ m adapter cable to the end of an already installed 62.5 μ m cable plant. Contact your EMC representative for details.

Standards Certification and Compliance

Rackmount disk enclosures are tested and certified for compliance with the international environmental and safety specifications listed below and marked to indicate such compliance and certification as required.

Standard	Description	
CSA 22.2 No. 950		
EN 60950	Safety of Information Technology Equipment including Electrical Business Equipment.	
UL 1950		
CE Mark	European EMC Directive & Low Voltage Directive Requirements.	

EMI Standards

Standard	Description
FCC Part 15	Class A, Radio Frequency Device Requirements
ICES-003	Class A, Interference-Causing Equipments Standard - Digital Apparatus
CE Mark	European EMC Directive & Low Voltage Directive Requirements.
VCCI	Class A, Voluntary Control Council for Interference
AS/NZS CISPR22	Class A, Electromagnetic Interference - Limits & Methods of Measurement of ITE
CNS13438	BSMI EMC Requirements

Fibre Channel Related Standards

Standard	Description
Fibre Channel	Physical and signaling interface, FC-PI, draft Rev. 13
Fibre Channel	Arbitrated Loop (FC-AL), Revision 4.5
Fibre Channel	Private Loop Direct Attach (PLDA), Revision 2.1
SCSI III	SCSI Enclosure Services (SES), Revision 8a

Note: In some cases, the DPE2 uses functions from later revisions of specifications.

Operating Limits

The ambient temperature specification is measured at the front bezel inlet. The site must have air conditioning of the correct size and placement to maintain the specified ambient temperature range and offset the CX300 heat dissipation listed on page A-2.

Requirement	Description
Ambient temperature	10°C to 40°C (50°F to 104°F)
Temperature gradient	10°C/hr (18°F/hr)
Relative humidity	20% to 80% noncondensing
Elevation	2438 m (8,000 ft) at 40°C, 3077 m (10,000 ft) at 37°C

The operating limits listed above for temperature and humidity must not be exceeded inside the closed cabinet in which the CX300 is mounted. Mounting equipment in a cabinet directly above or below a CX300 does *not* restrict air flow to the DPE2; air flows through the CX300 from front to back at a rate of approximately 100 cubic feet per minute. Cabinet doors must not impede the front to back air flow. Exhaust temperatures will rise approximately 12° C (21.6° F) above intake temperatures.

Environmental Recovery

If the system exceeds maximum ambient temperature by approximately $10^{\circ}\text{C}/18^{\circ}\text{F}$, the storage processors will begin an orderly shutdown that saves cached data, shuts off the SPs, and — in a DPE2 enclosure — powers down the disks. LCCs in each DAE2 will power down their disks but remain powered on. If the system detects that the temperature has dropped to an acceptable level, it restores power to the storage processors (which power up any disks in their enclosure) and the LCCs restore power to their disk drives.

Shipping and Storage Requirements

Requirement	Description
Ambient temperature	-40°C to 65°C (-40°F to 149°F)
Temperature gradient	25°C/hr (45°F/hr)
Relative humidity	10% to 90% noncondensing
Elevation	7625 m (25,000 ft)

SPS Technical Specifications

This section lists the technical specifications and operating limits for the standby power supply (SPS).

SPS to SP Interface

Type: Half-duplex RS-232

Baud rate: 9600, 8-bit

Parity: None

Power Specifications

Requirement	Description (All Ratings Assume a Fully Configured System)
ac line voltage	100 V ac to 240 V ac -10%/+10% single-phase, 47 Hz to 63 Hz; auto-ranging
ac line current, internal and pass-through	0.2 A max @ 100 V ac, internal current consumption (up to 10 A max at 100 V ac, pass-through to ac outlets) 0.1 A max @ 200 V ac, internal current consumption (up to 5 A max @ 200 V ac, pass-through to ac outlets)
Internal power consumption	60 VA (40 W) peak in hi-charge mode 10 VA (6 W) float charge mode
Power factor	NA for pass-through load; .67 pf for internal 10 VA load
Heat dissipation	21.6 x 10 ³ J/hr, (21 BTU/hr) steady state
In-rush current	6 A max for 1/2 line cycle @ 240 V ac
ac protection	15 A fuse, both phases
Chassis power inlet	IEC 320-C14 Appliance Connector (panel mount)
Chassis power outlet	EC 320-C13 Appliance Connector (panel mount) (2)
Charge times	After full power outage, 75 minutes maximum (45 minutes typically) After off-line storage, 2 hours approximately
ac failure detect time	12 ms max
Transfer time	28 ms maximum

SPS Operating Limits

Requirement	Description
Ambient temperature	10°C to 40°C (50°F to 104°F)
Relative humidity	20% to 80% noncondensing
Elevation	2439 m (8000 ft)

IMPORTANT: The operating limits listed above for temperature and humidity must not be exceeded inside the closed cabinet in which the SPS is mounted.

SPS Shipping and Storage Requirements

Requirement	Description
Ambient temperature	-40°C to 65°C (-40°F to 149°F)
Gradient, maximum	25°C/hr (45°F/hr)
Relative humidity	10% to 90% noncondensing
Elevation	7625 m (25,000 ft)

Dimensions and Battery Information

Service Clearance

Front 81.3 cm (32.0 in)

Rear 81.3 cm (32.0 in)

Battery Tests

Internal

Within 60 minutes after powerup and approximately every 2 weeks thereafter, the SPS performs a light test on the batteries. This test lasts less than one second. It does not verify battery capacity but does check connectivity and functionality. This test is transparent to other components in the array. If an actual power failure occurs during the test, the test is terminated and the unit goes into On-Battery mode.

Full

At each storage-system startup, the system software initiates a full power test. During the test, the system disables write cache and allows the SPS to stay on for its entire 90-second period.

The system initiates a full test when the SPS is online and fully charged. If the batteries are charging at test time, the system defers the test until the next programmed time.

Battery Self-Discharge Times

When you store an SPS, the battery charge level naturally decreases over time. This is characteristic of all rechargable batteries. The rate of self-discharge depends on temperature. Lower storage temperatures are desirable since the self-discharge rate is lower. The following graph shows how the remaining charge decreases over time at different temperatures.

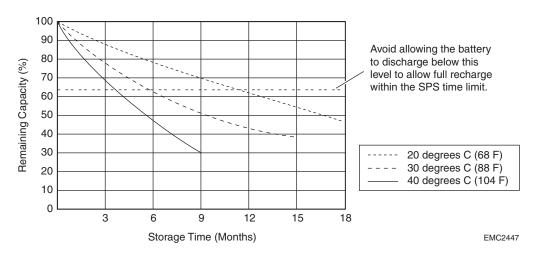


Figure A-1 Typical SPS Self-Discharge Levels at Different Storage Temperatures

IMPORTANT: If you are storing an SPS, do not store it longer than 6 months or at a temperature exceeding 30° C without recharging it. When you retrieve an SPS unit from storage, you should charge it by connecting it to ac power, with its power switch in the on position, for at least 12 hours before putting it into service or returning it to storage.

SPS Standards Certification/Compliance

A stand-alone SPS has been tested and certified for compliance with the international environmental and safety specifications listed below. The SPS is marked to indicate such compliance and certification as required.

Safety Standards

Standard	Description
EN 60950	Safety of Information Technology Equipment including Electrical
UL 1950	Business Equipment.
CSA 22.2 No. 950	

EMI Standards

Standard	Description
FCC Part 15	Class B, Radio Frequency Device Requirements
ICES-003	Class B, Interference-Causing Equipments Standard - Digital Apparatus
CE Mark	European EMC Directive & Low Voltage Directive Requirements.
VCCI	Class B, Voluntary Control Council for Interference
AS/NZS CISPR22	Class B, Electromagnetic Interference - Limits & Methods of Measurement of ITE
CNS13438	BSMI EMC Requirements

Cable Pinout Information

The SPS interface serial connector pinouts are as follows:

SP Interface Connector	
Pin	Function
1	Ground
2	ENABLED_OUT
3	AC_FAIL_OUT
4	ANY_FAULT_OUT
5	SPS transmit to SP
6	SPS receive from SP

Customer Support

This appendix reviews the EMC process for detecting and resolving software problems, and provides essential questions that you should answer before contacting the EMC Customer Support Center.

This appendix covers the following topics:

•	Overview of Detecting and Resolving Problems	B-2
•	Troubleshooting the Problem	B-3
	Before Calling the Customer Support Center	
	Documenting the Problem	
	Reporting a New Problem	
	Sending Problem Documentation	

Overview of Detecting and Resolving Problems

EMC software products are supported directly by the EMC Customer Support Center in the United States.

EMC uses the following process to resolve customer problems with its software products (Figure B-1).

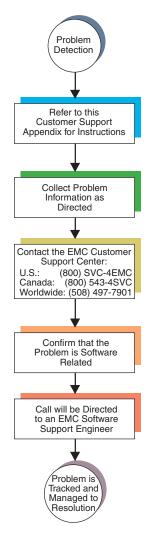


Figure B-1 Problem Detection and Resolution Process

Troubleshooting the Problem

Please perform the relevant diagnostic steps before you contact the EMC Customer Support Center:

- 1. Read the documentation carefully.
- 2. Reconstruct the events leading up to the problem and describe them in writing.
- 3. Run some test cases to reproduce the problem.

If you encounter a problem that requires technical programming or analysis, call the nearest EMC office or contact the EMC Customer Support Center at one of the following numbers:

United States: (800) 782-4362 (SVC-4EMC)
Canada: (800) 543-4782 (543-4SVC)

Worldwide: (508) 497-7901

Please do not request a specific support representative unless one has already been assigned to your particular system problem.

For additional information on EMC products and services available to customers and partners, refer to the EMC Powerlink website at:

http://powerlink.EMC.com

Before Calling the Customer Support Center

Have the following information available before calling the Customer Support Center or your support representative (if one has been assigned to you):

☐ Your company name
☐ Your name
☐ Your phone number
☐ For an existing problem, the problem tracking system ID, if one was previously assigned to the problem by a support representative
☐ For an MVS problem, the JESLOG, SYSPRINT, all STDOUT DD members of the server job output and similar output for the

client, and the relevant portion of the SYSLOG

Documenting the Problem

If the EMC Customer Support Center requests information regarding the problem, please document it completely, making sure to include the following information:

- ☐ Your company name and address
- ☐ Your name
- ☐ Your telephone number
- ☐ The importance of the problem, so that it can be assigned a priority level

To expedite the processing of your support request, you can photocopy this list and include it with the package.

Reporting a New Problem

Fo	r a new problem, please provide the following information:
	Release level of the software that you are running
	Software installation parameters
	Host type on which you are running
	Operating system you are running and its release number
	Functions of the software that you are running
	Whether you can reproduce the problem
	Previous occurrences of the problem
	Whether the software has ever worked correctly
	Time period that the software did work properly
	Conditions under which the software worked properly
	Changes to your system between the time the software worked properly and the problem began
	Exact sequence of events that led to the system error
	Message numbers and complete text of any messages that the system produced
	Log file dated near the time the error occurred
	Results from tests that you have run
	Other related system output
	Other information that may help solve the problem

Sending Problem Documentation

Use one of the following methods to send documentation of the problem to the EMC Customer Support Center:

- ♦ E-mail
- ◆ FTP
- U.S. mail to the following address:

EMC Customer Support Center 45 South Street Hopkinton, MA 01748-9103

If the problem was assigned a number or a specific support representative, please include that information in the address as well.

Customer Support	 	

Glossary

The terms defined here are important to installing and maintaining a storage system.

Α

ALPA (arbitrated loop physical address)

An 8-bit address that uniquely identifies an SP (or other device) on an FC-AL loop.

bind

In the context of a disk-array storage system, the procedure by which you format one or more disk modules into one LUN (logical unit) — usually as one of several types of RAID group.

C

cache

See *storage-system* caching.

CRU (customerreplaceable unit)

A hardware component, such as a disk module, that anyone can replace.

D

DAE (disk-array enclosure)

A storage device that includes an enclosure, disk modules, LCCs, cooling modules, and power supplies. The 2-gigabit disk-array enclosure (DAE2) supported in CX300 systems can hold 0-15 disks.

DIMM (dual in-line memory module)

A type of memory module used in SP memory for caching or RAID 3.

disk-drive module

Another name for disk module.

disk module A self-contained disk drive that slides into one of the slots in the front

of the enclosure. The carrier assembly holds the disk drive.

disk unit A short name for physical disk unit.

DPE (Disk Processor A storage device that includes an enclosure, disk modules, storage **Enclosure**) processors, cooling modules, and power supplies.

Ε

EA (enclosure A number, selectable on a DPE2 or DAE2 rear panel — fixed at 0 on a address)

CX300 — that helps establish a unique address for each disk module on an FC-AL loop. You must set the EA on each DAE2. Since the CX300 EA is 0, you might set the first DAE2 EA on loop 0 to 1, and

loop 1 EAs to 0 and 1.

EMI (electromagnetic Electronic radiation emitted by an electrical device. The levels of EMI

> are strictly controlled for data processing equipment. The EMI standards to which the CX300 complies are listed in Appendix A of

this manual.

ESD (electrostatic The discharge of an accumulated electrical charge (static). This can discharge)

severely damage delicate electronic circuits so you should take steps

to prevent this, as explained in Chapter 3 of this manual.

F

interference)

failover The transfer of one or more LUNs from one SP to another if a failure

> occurs in the path of the original SP. Unassisted failover requires properly configured paths between a host and each SP, and

failover/multipath software such as EMC PowerPath®.

FC-AL (Fibre Channel An arrangement of Fibre Channel stations such that messages pass

Arbitrated Loop) from one to the next in a ring.

Fibre Channel host The name for the printed-circuit board within the computer chassis bus adapter (FC that allows the server to access the Fibre Channel loop and thus the

adapter) SP(s).

field-replaceable See FRU (field-replaceable unit).

unit

FRU (field-replaceable unit)

A hardware assembly that can be replaced by trained personnel on site, instead of at the point of manufacture.

G

GBIC

Gigabit Interface Converter. A device for converting Fibre Channel signals from electrical to optical, and vice versa.

Н

HBA (host bus adapter)

Another name for Fibre Channel host bus adapter.

host See server.

hot repair See replace under power.

hub An FC_AL switching device that allows multiple servers and targets such as storage systems to connect at a central point. A single hub

configuration appears as a single loop.

L

LCC (link control card)

A FRU in DAE2 enclosures, integrated into the SP module in a CX300. An LCC connects Fibre Channel signalling to the disk modules, and provides Fibre Channel connectivity between the SP, disks, and other enclosures. It also provides bypass capability for faulted or missing units, and monitors and controls enclosure elements.

LUN (logical unit)

One or more disk modules (each having a head assembly and spindle) bound into a group — usually a RAID group. The operating system sees the LUN, which includes one or more disk modules, as one contiguous span of disk space.

Μ

memory module

See SP memory module.

N

node

Any device with a Fibre Channel interface (such as an HBA in a server or a storage system's SP) that connects to a Fibre Channel loop.

P

PDU (power distribution unit)

A device for the distribution of ac line power from one inlet to multiple outlets. Multiple PDUs in a rackmount cabinet provide higher availability since the power continues if one PDU (or its ac source, if the PDUs use separate ac sources) loses power.

power supply

A device to connect ac main power to low voltage dc power for the system components. A storage system can have two power supplies, PS A and PS B. With two, it can survive failure of one supply. You can replace a power supply under power, without interrupting applications.

R

replace under power

The capability that allows you to replace a FRU (for example, a disk module or a fan module) without powering down the storage system. Applications continue while you replace the failed module.

S

SCSI (small computer system interface)

A well-known protocol and standard for connecting computers and peripheral devices. Some Fibre Channel SPs use a Fibre Channel FC-AL front end to the server and a SCSI back end to the disk modules. The SPs used in DPEs use the Fibre Channel protocol throughout. The array uses SCSI protocol over Fibre Channel.

server

In the context of storage systems, a processor that runs an operating system and uses a disk-array storage system for data storage and retrieval.

SP (storage processor)

A printed-circuit board with processor memory modules and control logic that manages the storage-system I/O between the server FC adapter and the disk modules.

SP memory module

A memory module that provides the local storage for an SP.

SPS (standby power supply)

A unit that provides temporary backup power in case of a power outage. An SPS is required for storage-system write caching. If power fails, the SPS allows the SP to write the data from its cache to disk. You can replace an SPS under power, without interrupting applications.

storage processor See SP (storage processor).

(SP)

storage-system The procedure of temporarily storing disk-based data in SP memory caching

to save time if the data is needed again soon.

Glossary	

Index

A	Check light
ac power cord	power supply 3-5
attaching to power supply 3-19	SP 3-5
removing from power supply 3-17	circuit breaker 4-2
ac power, current draw A-2	compliance
Active light	DPE2 A-5
power supply 3-5	SPS A-11
SP 3-5	Cooling Check light 3-5
addressing requirements 2-3	copper cabling, specifications A-4
ALPA (Arbitrated Loop Physical Address)	CRU g-1
defined g-1	current draw, DPE2 A-2
avoiding electrostatic discharge damage (ESD)	customer support B-3
3-6	Customer Support Center B-7
D	D
В	
back end, defined 1-7	DAE (disk-array enclosure), defined g-1
battery 4-4	DAE2 (2-gigabit disk-array enclosure)
binding disk modules g-1	addressing requirements 2-5
	EA setting 2-6
C	number supported 1-2
cabinet, installing DPE2 in 2-4	discharge times, SPS A-10, A-12
cable pinout information, SPS A-12	disk drive
cables	description 1-7
connecting 2-13	numbered supported 1-2
copper, specifications A-4	specifications A-3
cabling	disk filler modules, installing 3-12
precautions 3-8	
requirements 2-2	
certification	
DPE2 A-5	
SPS A-11	
chassis, see enclosure	

disk module	F
adding 3-9	FC-AL (Fibre Channel Arbitrated Loop)
defined g-2	address ID, defined g-2
disk drive 1-7	back end (LCC) 1-6
drive carrier 1-8	cabling
drive specifications A-3	copper A-3
replacing 3-9	requirements 2-2
status lights 1-4	optical A-4
DPE2 (2-gigabit disk processor enclosure)	requirements 2-2
components 1-3	connector A-3
enclosure	
description 1-3	interface specifications A-3
front panel 1-4	physical address 2-5
front panel, description 1-4	powerup 2-16
installing in cabinet 2-4	Fibre Channel
monitoring status 3-2	adapter (FC adapter) g-2
operating limits A-5	related standards A-5
power supply 1-8	front bezel
powering down 3-6	description 1-5
	unlocking and opening 3-10
power-up and initialization sequence 2-14	front panel, description 1-4
requirements	FRUs (field-replaceable units)
cabling 2-2	defined 1-3, g-3
operating A-5	disk module
technical specifications A-2	adding 3-9
ive carrier description 1-8	defined g-2
	description 1-7
E	removing 3-11
EA (enclosure address)	replacing 3-9
about 2-3	handling 3-5
defined g-2	power issues 3-5
requirements 2-5	power supply
setting 2-6	adding 3-17
electromagnetic interference (EMI)	defined g-4
shield 1-5	description 1-8
	replacing 3-17
standards certification/compliance A-5	SP
electrostatic discharge (ESD), avoiding ESD	adding 3-15
damage 3-6	defined g-4
EMI (electromagnetic interference), defined g-2	description 1-6
enclosure	replacing 3-15
description 1-3	storing 3-5
front panel description 1-4	technical specifications A-2
midplane description 1-5	technical specifications A-2
ESD (electrostatic discharge)	
avoiding damage from 3-6	G
defined g-2	grounding xiii

Н	plugging in 3-19
HBA (host bus adapter) g-3	removing
nub, defined g-3	ac power cord 3-17
,	replacing 3-17
ı	status lights
I	Active 3-5
interface specifications, SPS A-8	Check 3-5
	Cooling Check 3-5
L	unplugging 3-17
LCC (link control card)	powering down DPE2 3-6, 3-17
cabling, requirements 2-2	powering up DPE2 3-19
FC-AL connector A-3	power-up and initialization sequence 2-14
length restrictions, copper cabling A-4	
loose cable 2-12	R
1005C CUDIC 2 12	
N.A.	replace under power, defined g-4
M	£
memory modules g-4	S
midplane, description 1-5	SCSI (small computer system interface), defined
	g-4
N	server g-4
non-operating limits	service clearance, SPS A-9
DPE2 A-7	shipping requirements A-7
SPS A-9	site requirements 2-2
	SP (storage processor)
•	adding 3-15
0	back end, defined 1-7
operating limits	cabling
DPE2 A-6	copper A-3
SPS A-9	optical A-4
optical cables, technical specifications A-4	defined g-4
	description 1-6
P	memory modules g-4
	optical cabling, specs A-4
PDU (power distribution unit) g-4	replacing 3-15
physical disk units, defined g-3	status light, Active 3-5
pinout information, SPS A-12	SPS (standby power supply)
Plugging 3-19	back panel 4-2
power	charge times A-8
issues and FRUs 3-5	defined g-4
overview 2-2	dimensions A-9
power consumption, SPS A-8	EMI standards A-11
power supply	fault LEDs 4-2
adding 3-17	self-discharge times A-10, A-12
attaching ac power cord 3-19	size A-9
defined g-4	standards certification/compliance A-11
description 1-8	technical specifications A-8

tests A-10
weight A-9
standards
DPE2 A-5
SPS A-11
standards certification/compliance, SPS A-11
status, monitoring DPE2 3-2
storage system
caching, defined g-5
SP, description 1-6
technical specifications A-2
storage time, effect on SPS A-10

T

technical specifications
DPE2 A-2
SPS A-8
technical support B-3
tests, SPS A-10
transfer times A-8
turning off power supply 3-6, 3-17
turning on power supply 3-6, 3-19

٧

voltage, DPE2 requirements A-2