
Diploma Thesis

Evaluation of publicly available Barrier–Algorithms and
Improvement of the Barrier–Operation for large–scale

Cluster–Systems with special Attention on InfiniBandTMNetworks

Torsten Höfler

htor@informatik.tu-chemnitz.de

Advisers: Dipl.-Inf. T. Mehlan, Dipl.-Inf. F. Mietke

Supervisor: Prof. Dr.-Ing. W. Rehm

Task of the Thesis

The diploma thesis intends to improve the well–known barrier–operation. This operation is offered by
almost every message–passing–system. A wide range of parallel applications depend on the efficiency
of the barrier–algorithm. The possibility of providing a barrier of constant time complexity has to be
investigated. An optimal barrier–algorithm would need constant time, no matter how much computing
nodes are invoked. This research results in suggestions how to provide a well performing implementation
of the barrier.

To determine the usability of advanced network services, the performance of special facilities of InfiniBand
has to be measured. The main focus lies on the InfiniBand multicast service, the InfiniBand atomic oper-
ations and the InfiniBand RDMA capabilities. This evaluation provides basic knowledge to decide which
network facilities are suitable to implement barrier–algorithms. Moreover the InfiniBand specification is
searched for other facilities supporting barrier–algorithms efficiently.

It is also considered to use hardware support to improve the barrier–operation. Different approaches for
an acceleration of the barrier–operation have to be discussed. It shall be determined whether network
switches can be modified to improve the barrier. Especially extensions to InfiniBand switches shall be
discussed. Furthermore some alternatives shall be considered. Thus an investigation of dedicated barrier–
and broadcast–networks and bus–based networks shall be performed.

The diploma thesis has to result in a statement explaining the mechanisms and algorithms that are best
suitable to implement the barrier–operation. The main goal is to achieve a barrier with constant time
complexity for large numbers of computing nodes. To preserve this behavior some assumptions have to
be made. This applies to the processing speed of network devices and computing nodes as well as to
the network topology. The assumptions and prerequisites necessary to achieve constant time for barriers
have to be explained.

Primary Theses

1. It is possible to create a constant barrier–operation for large–scale cluster systems.

2. The preceding work does not take into account the theoretical foundations properly.

Thesis Declaration

I hereby declare that this diploma thesis was composed by myself and all work included has been done
by me.

Chemnitz, 29th March 2005

Torsten Höfler

Abstract

The MPI Barrier-collective operation, as a part of the MPI-1.1 standard, is extremely im-
portant for all parallel applications using it. The latency of this operation increases the
application run time and can not be overlaid. Thus, the whole MPI performance can be
decreased by unsatisfactory barrier latency. The main goals of this work are to lower the
barrier latency for InfiniBandTM networks by analyzing well known barrier algorithms with
regards to their suitability within InfiniBandTM networks, to enhance the barrier operation
by utilizing standard InfiniBandTM operations as much as possible, and to design a constant
time barrier for InfiniBandTM with special hardware support. This partition into three main
steps is retained throughout the whole thesis. The first part evaluates publicly known models
and proposes a new more accurate model (LoP) for InfiniBandTM . All barrier algorithms
are evaluated within the well known LogP and this new model. Two new algorithms which
promise a better performance have been developed. A constant time barrier integrated into
InfiniBandTM as well as a cheap separate barrier network is proposed in the hardware section.
All results have been implemented inside the Open MPI framework. This work led to three
new Open MPI collective modules. The first one implements different barrier algorithms
which are dynamically benchmarked and selected during the startup phase to maximize the
performance. The second one offers a special barrier implementation for InfiniBandTM with
RDMA and performs up to 40% better than the best solution that has been published so far.
The third implementation offers a constant time barrier in a separate network, leveraging
commodity components, with a latency of only 2.5µs. All components have their specialty
and can be used to enhance the barrier performance significantly.

Contents

1 Introduction 1
1.1 Organization/Structure of the Document . 1
1.2 MPI Standard . 1

1.2.1 The MPI Barrier() Call . 2
1.2.2 Available MPI Implementations . 3

1.3 InfiniBandTM . 3
1.3.1 InfiniBandTM Architecture . 3
1.3.2 Hardware Queuing . 4
1.3.3 Connection Management . 5
1.3.4 Options for Message Passing . 5
1.3.5 Interacting with the HCA . 7

1.4 Open MPI . 8
1.4.1 Component Framework . 8
1.4.2 A Components Lifecycle . 9

1.5 Summary . 10

2 Software Solution 11
2.1 Models for Parallel Computation . 11

2.1.1 Introduction . 11
2.1.2 Related Work . 11
2.1.3 Organization . 12
2.1.4 Characterization of available Models . 12

2.2 Barrier Algorithms . 17
2.2.1 Algorithms Performing Phase 3 . 18
2.2.2 Algorithms Omitting Phase 3 . 28
2.2.3 Summary of Algorithms . 32
2.2.4 Proof of Optimality . 32
2.2.5 Evaluating the LogP Predictions for TCP/IP . 33
2.2.6 Two new Algorithms for Barrier Synchronization 38

2.3 Proposal of a Model for InfiniBandTM . 44
2.3.1 Message Passing Options . 45
2.3.2 The HCA Processor . 45
2.3.3 Hardware Parallelism . 45
2.3.4 Measuring the Parameters . 46
2.3.5 A Benchmark of the LoP Model . 47
2.3.6 Benchmark Results . 52
2.3.7 Choosing the Optimal Solution to the Problem . 57

2.4 Summary . 61

3 Hardware Solution 62
3.1 Barrier Support in the Data Network . 62

3.1.1 Single Switch . 62
3.2 Barrier Support in a dedicated Network . 66

3.2.1 Proof of Concept Design . 66
3.2.2 Runtime and Scalability . 67

3.2.3 Further Ideas . 68
3.3 Summary . 68

4 Practical Results and Conclusion 69
4.1 Implementation . 69

4.1.1 Software Barrier . 69
4.1.2 Hardware Barrier . 70
4.1.3 InfiniBandTM Barrier . 70

4.2 Benchmark Environment . 70
4.2.1 Mozart . 70
4.2.2 CLiC . 71
4.2.3 Oscar . 71

4.3 Benchmark Applications . 71
4.3.1 Expected Results . 71
4.3.2 The Microbenchmark . 72
4.3.3 The Application Abinit . 72

4.4 Microbenchmark Results . 73
4.4.1 Software Barrier . 73
4.4.2 Hardware Barrier . 73
4.4.3 InfiniBandTM Barrier . 74

4.5 Application Results . 75
4.6 Conclusion and Future Work . 75
4.7 Acknowledgments . 76

A Appendix 77
A.1 List of Links . 77
A.2 List of Figures . 77
A.3 List of Listings . 79
A.4 List of Pseudocode-Listings . 79
A.5 List of Tables . 80
A.6 Glossary . 80
A.7 References . 82
A.8 Theses . 86

Chapter 1

Introduction

In general, a barrier operation is used to synchronize a number of processes. Thus, it can be seen as a
synchronization primitive for parallel systems and can be useful to divide the application into different
loosely coordinated phases. For example, a given application could differ between communication and
computation steps, synchronized by a barrier operation. This prevents data from being sent before it
is valid and overwriting of buffers during the calculation. The semantics for this operation define that
each process calls the barrier function and the function does not return until all processes did so. This
function is part of the MPI collective framework and therewith regarding to Amdahls Law [Amd00] very
time critical. The time to complete a barrier has to be reduced as far as possible. This paper is mainly
based on the barrier syntax and semantics defined in the MPI standard (see section 1.2). However, this
does not limit the use of the achieved results to only this application domain. The concepts and algorithms
which will be developed can be generalized for each synchronization problem in a parallel system. A big
part of this paper is bound tightly to InfiniBandTM however parts of the developed methodologies can
also be generalized for usage with any other interconnect network.

1.1 Organization/Structure of the Document

The first part of this thesis introduces several basic terms and assumptions which are used throughout the
following chapters. The fundamental software to benchmark the results is described in terms of suitability
and implementation details in part two of this introduction. Chapter 2 describes different models for
parallel computation and their eligibility for modelling the barrier operation for InfiniBandTM . Different
published barrier algorithms are analyzed in the context of the chosen model and the correctness of the
predictions is validated with benchmarks. Two new barrier algorithms which are able to exploit hardware
parallelism are proposed and evaluated in the second part of chapter 2. In addition, a new model will
be developed and parametrized with benchmark results at the end of this chapter to satisfy the special
needs of the barrier modelling for InfiniBandTM networks. A new hardware solution to incorporate barrier
support into InfiniBandTM switches or a separate barrier network is proposed in chapter 3 followed by
the practical evaluation of all developed barrier techniques presented in this thesis.

1.2 MPI Standard

MPI stands for Message Passing Interface, which focuses on providing a widely used standard for writing
parallel programs. The main target is to unify the conflicting requirements ease-of-use, portability,
efficiency and flexibility for all HPC platforms. A complete list of goals stated in the MPI Standard 1.1
[For95] is shown in the following enumeration.

CHAPTER 1. INTRODUCTION 1.2. MPI STANDARD

• Design an application programming interface (not necessarily for compilers or a system implemen-
tation library)

• Allow efficient communication: Avoid memory-to-memory copying and allow overlap of computation
and communication and offload to a communication coprocessor, where available.

• Allow implementations that can be used in a heterogeneous environment.

• Allow convenient C and Fortran 77 bindings for the interface.

• Assume a reliable communication interface: The user needs not cope with communication failures.
Such failures are handled by the underlying communication subsystem.

• Define an interface that is not too different from current practice, such as PVM, NX, Express, p4,
etc., and provide extensions that allow greater flexibility.

• Define an interface that can be implemented on many vendor’s platforms, with no significant changes
in the underlying communication and system software.

• Semantics of the interface should be language independent.

• The interface should be designed to allow thread-safety.

List 1.1: MPI 1.1 goals

The design process started officially in 1992 when Dongarra, Hempel, Hey, and Walker proposed a
preliminary draft, known as MPI-1, to the community. This ongoing development was promoted by the
newly founded MPI Forum1 which finished the MPI-1 review in February 1993. This first draft was
intended as a starting point and covered only point to point communication and some very basic origins
for the design of collective operations. An official version of this draft was released to the public at the
Supercomputing 93 conference in November 1993.

The MPI Forum continued its work with the participation of over 40 organizations and proposed a final
version of the MPI-1.0 standard in May 1994. This standard was swiftly superseeded with the MPI-1.1
standard in June 1995. The standardization process of MPI-2 started in April 1995 and led to a final
MPI-2 document in April 1997 as an addition to MPI-1.1. Since then, the community concentrates on
implementing the proposed standards in an efficient way.

It is explicitely stated that the design focuses on improving the performance and scalability of parallel
computers with specialized interconnect hardware (section 1.3 in [For95]). This thesis focuses on improv-
ing the performance of the MPI_Barrier() operation stated in the standard by utilizing special features
of the InfiniBandTM network or hardware support.

The remainder of this section describes the semantics of the barrier call described in the MPI-1.1 standard
and the available Open Source libraries which can be used to test and validate the results.

1.2.1 The MPI Barrier() Call

The barrier call is standardized as a collective operation in MPI-1.1 as MPI_Barrier(MPI_Comm comm).
The communicator comm is a logical process group wherein the operation is performed. There are sev-
eral predefined communicators like MPI_COMM_WORLD (includes all processes inside the MPI job) and
MPI_COMM_SELF (points to the process itself). The semantics of this call are easily described as:

”MPI_BARRIER blocks the caller until all group members have called it. The call returns at any process
only after all group members have entered the call.” (chapter 4.3 in [For95])

1MPI Forum [http://www.mpi-forum.org]

Torsten Höfler Page 2/86

http://www.mpi-forum.org

CHAPTER 1. INTRODUCTION 1.3. INFINIBANDTM

1.2.2 Available MPI Implementations

Todays most important available open source MPI implementations include MPICH2 and LAM/MPI3. A
new approach started by the Open HPC group to develop a new MPI implementation called Open MPI4,
which is mainly a consolidation of different MPI implementations (FT-MPI5, LA-MPI6, LAM/MPI7 and
PACX-MPI8), has the potential to become an important library in the near future.

The open and well-understood architecture of the emerging Open MPI project is due to its modular
design the most suitable implementation to incorporate ideas proposed in this paper. Thus, Open MPI is
used to demonstrate and benchmark the results of the new approaches. Architectural and implementation
details of the library are presented in chapter 1.4.

1.3 InfiniBandTM

The InfiniBandTM Architecture (IBA) is used as an interconnection network. It was mainly intended
as a high speed interconnect for servers in a typical data center environment. The development process
targeted at offering high bandwidth and high expandability for future computing systems and innovative
features like RDMA and message send/receive within the user level without paying the costs for entering
kernel routines. This, and the relatively low prices due to the wide spreading make InfiniBandTM also
very attractive to HPC vendors. Especially the fact that the design actively supports standard bus-
adaptions (e.g. PCI-X, PCI-ExpressTM, HTX) increases the suitability for clusters based on commodity
components.

The InfiniBandTM specification [IBA] is actively developed and maintained by the Infiniband Trade
Association (IBTA9). The first version of the specification was introduced in September 2000 as revision
1.0. Revision 1.1 followed after a subrevision 1.0.a (mainly error corrections) in June 2002 with some
new features. The current revision 1.2, available since September 2004, introduces some new features
proposed by different vendors (e.g. Mellanox10) such as a shared receive queue (see [IBA], section 10.2.9).
The legacy revision 1.1 is used as a foundation for implementations and measurements because hardware
fully supporting the specification 1.2 is not yet available. This denotes that all approaches shown in this
work may be enhanced with features of the new specification.

1.3.1 InfiniBandTM Architecture

A deployed InfiniBandTM architecture is called a System Area Network. It consists of a number of
switches which route packets based on virtual point-to-point connections. Nearly every device can act as
an end point, beginning with a single I/O Terminal up to very complex systems such as multiprocessor
computers. These systems are classified into two fields by their use cases. A TCA (Target Channel
Adapter) usually fulfils exactly one task (e.g. a storage controller) while a HCA (Host Channel Adapter)
acts together with a more complex system like a computer. The operation mode can additionally be
divided into two connection variants:

• module-to-module (inter chip communication, if I/O modules are supported by the systems)

• chassis-to-chassis (classical host interconnect like Ethernet)

This paper assumes that the end-systems are normal computers and it uses the term HCA for the
InfiniBandTM connection device. No further assumptions are taken for the connection parameters, both
connection variants mentioned above are supported.

2MPICH [http://www-unix.mcs.anl.gov/mpi/mpich]
3LAM/MPI [http://www.lam-mpi.org]
4Open MPI [http://www.open-mpi.org]
5FT-MPI [http://icl.cs.utk.edu/ftmpi]
6LA-MPI [http://public.lanl.gov/lampi]
7LAM/MPI [http://www.lam-mpi.org]
8PACX-MPI [http://www.hlrs.de/organization/pds/projects/pacx-mpi]
9IBTA [http://www.infinibandta.org]

10Mellanox [http://www.mellanox.com]

Torsten Höfler Page 3/86

http://www-unixdiscretionary {-}{}{}.mcsdiscretionary {-}{}{}.anldiscretionary {-}{}{}.govdiscretionary {-}{}{}/mpidiscretionary {-}{}{}/mpich
http://wwwdiscretionary {-}{}{}.lam-mpidiscretionary {-}{}{}.org
http://www.open-mpi.org
http://icldiscretionary {-}{}{}.csdiscretionary {-}{}{}.utkdiscretionary {-}{}{}.edu/ftmpi
http://publicdiscretionary {-}{}{}.lanldiscretionary {-}{}{}.govdiscretionary {-}{}{}/lampi
http://wwwdiscretionary {-}{}{}.lam-mpidiscretionary {-}{}{}.org
http://wwwdiscretionary {-}{}{}.hlrsdiscretionary {-}{}{}.dediscretionary {-}{}{}/organizationdiscretionary {-}{}{}/pdsdiscretionary {-}{}{}/projectsdiscretionary {-}{}{}/pacx-mpi
http://www.infinibandta.org
http://www.mellanox.com

CHAPTER 1. INTRODUCTION 1.3. INFINIBANDTM

The IBA offers several features which are helpful for message passing. Some of them are listed in the
following:

• reliable transport

• user level communication

• management infrastructure

• native IPv6

• decreased CPU utilization (full offloading)

• send/receive semantics and RDMA/Atomic

• scalability in bandwidth

• request queuing in hardware

• multicast

List 1.2: InfiniBandTM Features

1.3.2 Hardware Queuing

All requests are queued in hardware to ensure that multiple user-level applications can use the HCA
to send or receive messages. Due to this fact, the operating system does not need to manage multiple
accesses to the device. It acts as a normal entity requesting a service. Quality of Service (QoS), with
several virtual lanes ordered by priority, may be used to ensure proper prioritization of data transmissions.

A queue is usually called Work Queue (WQ). Work Queues are created in pairs (Queue Pairs, QP), one
for receive operations and one for send operations. Requests to send data (Send Requests, SR) to a
remote node are posted to the Send Queue (SQ) and requests to receive data (Receive Requests, RR)
with appropriate placement information are posted to the Receive Queue (RQ). The hardware fetches an
element from the top of the queue and processes it. It has to be stated that two or more Work Requests
(WR) can be processed in parallel, even if they originate from the same queue. The hardware places a
notification with status information into a completion queue (CQ) associated with the source QP of the
request after processing it. Whereby a completion queue can be shared between different Queue Pairs to
simplify the use. Each application on the system creates several Queue Pairs for sending and receiving
data, where usually every QP denotes a single communication channel to another system. The whole
process is shown in figure 1.1.

A Send Queue can handle three different request types:

1. SEND

2. RDMA

3. MEMORY BIND

A SEND SR specifies a piece of data (address, length) in the local memory to send to a peer. The RDMA
SR splits up into three modes:

1. RDMA Write - specifies local data (address and length), a remote r key and a remote address to
put the data

2. RDMA Read - specifies a remote address, an r key and a length to fetch the data and a local
address to put it

3. RDMA Atomic - performs a 64 bit atomic read and a conditional modify in the remote memory

A MEMORY BIND WR instructs the hardware to change memory registration relations. The operation
returns also a new r key which is used by foreign nodes to access local memory (see RDMA). The r key
is a security feature to prevent undesired access to local memory by other nodes.

Torsten Höfler Page 4/86

CHAPTER 1. INTRODUCTION 1.3. INFINIBANDTM

QP 1

CQ 1

HCA

CPU

Application

CQ 2

SR SR

RR RR

. . .

. . .
SR

RR

QP 2

SR SR

RR RR

. . .

. . .
SR

RR

SR SR

RR RR

. . .

. . .
SR

RR

QP 3

CQE

CQE

CQE

CQE

CQE

CQE

. . .

. . .

HCA

1

Application
2

Figure 1.1: Hardware Queuing

A Receive Queue can only handle one type of Receive Request which specifies where to place the data
which is received from another send operation on the remote side. Normal RDMA SR are usually not
handled by Receive Queue Entries (RQE), except if the RDMA was issued with an 32 bit immediate
value which consumes a RQE and puts the value into it.

1.3.3 Connection Management

The IBA supports connected and unconnected operation. The unconnected type uses datagrams to send
and receive data and the connected type offers a virtual connection to send and receive (theoretically
unlimited) streams of data. The segmentation and reassembly for connected types is done in hardware.
To establish a connection, each partner has to create a QP and both have to tie them together. Each
QP is uniquely addressed by the HCA LID (Local ID), optionally the GID (Global ID) and the local QP
number. In comparison with the TCP/IP11 protocol, the LID and GID correspond to the IP address
(GID = network part, LID = host part) and the QP number correlates with the TCP port number. This
information has to be exchanged in advance (e.g. through an out-of-band channel).

Unconnected QPs are not tied to a single remote node. The remote destination is given with each SQE.
The same addressing scheme is used as for connected communication. This operation is expected to
be generally slower than an already connected QP because most operations which are done during the
connection establishment for connected QPs have to be repeated for each single packet.

1.3.4 Options for Message Passing

The IBA specification gives several options for passing a message from one system to another. One can
use native IBA transport such as RDMA Read/Write, Send/Receive or other transport types like RAW
Datagram encapsulating Ethernet or IPv6. The transport can be connection oriented or connectionless.
Another choice is to use reliable transport or to handle the reliability in the application level. Table 1.1
shows a systematic list of service types and their related features.

11Transmission Control Protocol/Internet Protocol

Torsten Höfler Page 5/86

CHAPTER 1. INTRODUCTION 1.3. INFINIBANDTM

Service Type Connection Reliable Send/Receive RDMA Transport

Reliable Connection (RC) y y y y IBA
Unreliable Connection (UC) y n y n IBA
Reliable Datagram (RD) n y y y IBA
Unreliable Datagram (UD) n n y n IBA
RAW Datagram (RAW) n n y n RAW

Table 1.1: InfiniBandTM Service Types

Each SQE has to fit to the QP regarding to the service type or it will be rejected. The following sections
describe each of the IBA transport types to give a solid base for modelling the IBA and choosing the
right connection type.

1.3.4.1 Reliable Connection (RC)

The steps for sending a message with the RC service type are shown in figure 1.2. It is assumed that the
connection has been established in advance. The data is copied directly from the sender to the receiver’s
provided user-buffers (address, length) exploiting DMA functionality. Each message is acknowledged by
transmitting an ACK packet back to the sender.

Sender Receiver

CPU HCA
- post Send Request with

- local address, length
- target QP

- fetch Send Request
- get local data (DMA)

- send data
- wait for ACK

HCA CPU

- match QP
- fetch Receive Request
- put data to memory (DMA)
- send ACK
- post CQE

- match ACK
- post CQE

- fetch CQE

- fetch CQE

- post Receive Request with
- source QP
- local address, length

t

Figure 1.2: Reliable Connection

1.3.4.2 Unreliable Connection (UC)

The process of sending a message with the UC service type is shown in figure 1.3. It is assumed that the
connection has been established in advance.

1.3.4.3 Reliable, Unreliable and RAW Datagram (UD/RD/RAW)

The process of sending a message with RD or UD/RAW is nearly the same as for RC (figure 1.2) or
UC (figure 1.3) respectively. Only one additional step of finding the route has to be added to the HCA
tasks on the sender side before sending a packet. This leads to the conclusion that datagram sending is
generally slower than sending packets over an already established connection.

Torsten Höfler Page 6/86

CHAPTER 1. INTRODUCTION 1.3. INFINIBANDTM

Sender Receiver

CPU HCA
- post Send Request with

- local address, length
- target QP

- fetch Send Request
- get local data (DMA)

- send data

HCA CPU

- match QP
- fetch Receive Request
- put data to memory (DMA)
- post CQE

- post CQE

- fetch CQE

- fetch CQE

- post Receive Request with
- source QP
- local address, length

t

Figure 1.3: Unreliable Connection

1.3.5 Interacting with the HCA

All actions to send or receive data between the user process and the HCA are fully done in the user space of
the operating system. The standard defines a so called verbs which is not a programming interface (API),
but which defines necessary elements of an API so that the operating system vendor can develop his own
version of the verbs API to interact with user programs. This means that verbs is a semantical description
of functions which have to be offered to the user. This freedom resulted in mainly three different types
of available verbs APIs, the Mellanox verbs API and the SF-IBAL verbs API. Both have been combined
into the new emerging standard of the OpenIB verbs API. The OpenIB12 initiative was founded by
different vendors to specify a standard API for accessing the HCA verbs. Due to this standardization
efforts, all verbs API examples are shown with the Mellanox VAPI13 which is fully compatible with
the new OpenIB API. More functions have been defined by Mellanox in addition to the standard and
are called EVAPI14. Some of them are used in the source codes but they are also fully supported by
the OpenIB API. The necessary VAPI calls to establish a connection and send a message between two
nodes are shown in the following list (simplified). Both nodes perform equal actions for initialization
and connection establishment. The only difference resides in the last call to VAPI_post_sr(QP) to post
a Send Request (on the sender side) or VAPI_post_rr(QP) to post a Receive Request (on the receiver
side). All memory to send or receive data has to be registered in advance to indicate the HCA the user
buffer regions. The register operation locks the pages in memory so that a DMA access from the HCA
can be guaranteed at any time.

1. VAPI_open_hca() - inits the HCA

2. VAPI_alloc_pd() - offers additional memory access rights (if more than one PD15 is allocated)

3. VAPI_create_cq() - creates a new CQ

4. VAPI_register_mr(ADDR, LEN) - registers memory to send or receive data

5. VAPI_create_qp(QP) - creates a new Queue Pair

6. VAPI_modify_qp(RST->INIT) - modifies QP from Reset (RST) to Init

7. VAPI_modify_qp(INIT->RTR, LID, QP_NUM) - modifies QP from Init to Ready to Receive (RTR)

8. VAPI_modify_qp(RTR->RTS) - modifies QP from RTR to Ready to Send (RTS)

9. VAPI_post_sr(QP) - posts a Send Request to SQ (Sender)

10. VAPI_post_rr(QP) - posts a Receive Request to RQ (Receiver)

11. VAPI_poll_cq(CQ) - polls completion queue for new entries

12OpenIB [http://www.openib.org]
13verbs API
14Extended verbs API
15Protection Domain

Torsten Höfler Page 7/86

http://www.openib.org

CHAPTER 1. INTRODUCTION 1.4. OPEN MPI

12. VAPI_deregister_mr() - deregisters memory

13. VAPI_destroy_qp(QP) - destroys QP in HCA

14. VAPI_destroy_cq(CQ) - destroys CQ in HCA

15. VAPI_dealloc_pd(PD) - destroys PD

16. VAPI_close_hca(HCA) - closes HCA

A full list of VAPI/EVAPI functions is available from Mellanox or the OpenIB project.

1.4 Open MPI

Open MPI, presented in [GFB+04], is chosen as a framework to incorporate the algorithms, mainly
because of its open and extensible framework. Incorporating new collective algorithms is fairly easy. The
architecture of Open MPI will be briefly described in the following. However, Open MPI undergoes heavy
development including the architecture which had recently major changes and it is not possible to know
if more things will be changed in the future. So this description has to be seen to be linked to the current
prerelease state of the art.

1.4.1 Component Framework

The architecture of Open MPI, described in [GFB+04] and [SL04] changed slightly and resulted in three
distinct software layers:

1. MPI - MPI Layer

2. RTE - Run Time Environment

3. MCA - Modular Component Architecture

The MPI Layer is the adaption layer integrating the MPI standard into the underlying functionality
(mainly the RTE and the MCA). The RTE layer provides services at run time (e.g. process startup or
output forwarding). These layers do not have to be modified to incorporate new collective algorithms, so
there is no need to investigate them further.

The MCA layer is a component framework, called Modular Component Architecture (formerly MPI
Component Architecture). This framework manages other layers below by providing several services (e.g.
finding components or processing user parameters). Each major functional area has an associated compo-
nent framework to manage multiple components performing related or identical tasks. Each component
is clearly defined by an interface and offers functional services to the upper layers of the framework. An
initialized component is called a module and can be seen as an instance of the associated component.

The framework with all layers, some example component frameworks (components A and Z) and managed
modules is shown in figure 1.4.

The next listing shows a number of frameworks already implemented in Open MPI. However, the archi-
tecture is flexible enough to add arbitrary functionality with new frameworks.

• PTL - The Point-to-point Transport Layer consists of network specific modules responsible for low
level data transfer. It can be seen as a kind of device driver.

• PML - The Point-to-point Management Layer provides several transport services for the MPI Layer
(e.g. segmentation and reassembly, striping or reliability).

• COLL - The Collective framework provides modules for collective operations.

• TOPO - The Topology framework offers processes running within an MPI job a facility which allows
the MPI library components to perform optimizations based on locality (e.g. in grid environments).

List 1.3: Available Open MPI Component Frameworks

Torsten Höfler Page 8/86

CHAPTER 1. INTRODUCTION 1.4. OPEN MPI

User Application

MPI API

Run Time Environment (RTE)

Modular Component Architecture (MCA)

Component A

Module

Module

Module

.

.

.

Component Z

Module

Module

Module

.

.

.

. . .

Figure 1.4: Open MPI Architecture

COLL is the most essential framework for this paper. The others are not investigated any further. To
understand the structure of a single COLL component, the general structure of a component has to be
described.

1.4.2 A Components Lifecycle

As described in [SL04], a component runs through five stages during its existence within the MCA:
Selection, initialization, checkpoint/restart, normal operation and finalization. Figure 1.5 shows the
order in which these stages are traversed. The COLL component is called module after initialization
because each communicator is associated with a single COLL module (but all of these share the same
source code). This means that only one instance of the COLL component offering a specific functionality
can be active at any time, but each communicator has its own state (comparable to an instance) of this
module.

Selection

Initialization

Checkpoint/
 Restart

Normal
 usage

Finalization

Figure 1.5: A Components Lifecycle

The ”selection” is done during the creation of a new communicator (including MPI_COMM_WORLD and
MPI_COMM_SELF), typically triggered inside the MPI API functions MPI_INIT, MPI_COMM_CREATE,
MPI_COMM_DUP, MPI_COMM_COMMIT or MPI_COMM_SPLIT. The mca_coll_<name>_comm_query function of
each available component is queried by the framework to return a list of function pointers to the offered

Torsten Höfler Page 9/86

CHAPTER 1. INTRODUCTION 1.5. SUMMARY

functions and a priority (between 0 and 100). The initialization function is also used to test the avail-
ability of special features inside the created communicator. If a required feature (e.g. an InfiniBandTM

connection to all nodes) is not available, the component can simply disable itself by returning a null
pointer. The component returning the highest priority is selected by the COLL framework.

The winning component enters the ”initialization” phase and the COLL framework calls the
mca_coll_<name>_module_init function. The component can also initialize internal data structures,
hardware features or any other one-time-setup which is necessary to use the collective functions later on.
The initialized data has to be associated with the communicator structure by changing the
c_coll_basic_data pointer to the beginning of the data structure. The component returns a pointer at
the framework which includes a list to all provided functions after the initialization work is done. If several
functions are not supported, the function pointers should be null to indicate to the COLL framework
that the basic functions (provided by a component named basic) should be used. The proposed module
contains only the barrier function (null pointers for all other functions) and uses the initialization phase
to perform the barrier setup phase which has to be done only once at startup. The relevant information
is stored in a structure which is referenced by the c_coll_basic_data pointer.

The ”checkpoint/restart” stage has to take care of messages which are currently on the fly and has to
drain all queues. This is not required in our case because the component is layered on top of the PTL
interface for sending and receiving messages (PTL takes care itself).

”Normal usage” is the state where requested collective operations (e.g. MPI_Barrier()) are performed.
Therefore previously stored data may be extracted from the communicator. The functions are called by
their function pointers which were provided to the COLL during the initialization phase.

The finalization step requests the module to clean up all used data structures and drain the network to
unload cleanly. The function mca_coll_<name>_module_finalize is called to trigger the cleanup.

1.5 Summary

This chapter gave an introductory description of the basics for this thesis. The MPI Standard, the
InfiniBandTM network and the Open MPI framework was described in all facings which are relevant for
the reminder of this paper. The following chapter analyzes the possibilities to implement the barrier
functionality in software.

Torsten Höfler Page 10/86

Chapter 2

Software Solution

Implementing collective algorithms in hardware or in software are the two fundamental paradigms to
optimize them. The latter possibility will be analyzed first. The software algorithm can be layered
on top of normal message passing operations, without modifying the hardware design or adding new
components. This approach can be generally considered as cheaper in terms of production costs and
is more portable across different systems with the same underlying communication architecture. There
are several well known algorithms which are currently used to perform the barrier by using normal MPI
point-to-point operations on top of any message passing system. Most of them were developed for shared
memory systems and have been adopted to distributed memory systems (like InfiniBandTM). These
algorithms are evaluated regarding to their running time and scalability (time to complete the barrier
operation when all n nodes reach the barrier simultaneously). To perform these evaluations in a proper
and accurate way, a model of the underlying network (in our case InfiniBandTM) has to be found or
developed if there is no suitable model available yet. The section 2.1 will investigate different models
for parallel computation on distributed memory systems. Section 2.2 evaluates all currently known
algorithms regarding to the chosen model and draws a conclusion to implement a single algorithm for
performing the barrier operation.

2.1 Models for Parallel Computation

2.1.1 Introduction

The different barrier algorithms have to be modeled to find the optimal solution of the problem for the
InfiniBandTM network. The used model should reflect the network properties as accurate as possible.
The following section describes several models which could be used to analyze barrier algorithms and
predict the runtime behavior. The most accurate model is chosen as a result.

Models for parallel programming are often used to develop and optimize time critical sections of algorithms
for parallel systems. These models should reflect all relevant parts of real-life-systems for algorithmic
design. Several simplifying assumptions are taken to create these models. The next part of this thesis
deals with analysis and evaluation of different well known models for their suitability to the InfiniBandTM

network architecture. All models are described and rated1 in this work.

2.1.2 Related Work

Many models have been developed during the past years. Most of them are dedicated to a specific
hardware or network architecture [Lei92, Ble87] or the shared memory paradigm [LCW93, GMR97].
There are also some general purpose parallel models which try to remain architecture independent like
the PRAM [FW78b, KR90], the BSP [Val90], the C3 [HK94] or the LogP [CKP+93] model. These generic

1rating is done by comparing advantages and disadvantages for modeling InfiniBandTM

CHAPTER 2. SOFTWARE SOLUTION 2.1. MODELS FOR PARALLEL COMPUTATION

programming models are characterized and used as starting point for further work. Several comparative
studies and surveys are also available [MMT95, Ham96, BHP96], but they provide a limited view by
comparing just a small subset of all available models.

2.1.3 Organization

Each mentioned model is described by its main characteristics. A reference to the original publication
is given for additional details (e.g. detailed information in terms of execution time estimation). Each
model is analyzed in advantages and disadvantages for modeling the InfiniBandTM architecture, and a
conclusion for further usage in the design process of a new model is drawn. Several models have been
enhanced by different modifications of third authors. Some of them and their implications for the usability
of the underlying model are discussed in a separate subsection. The last section draws a conclusion and
proposes a suitable model for the barrier operation over the InfiniBandTM network.

2.1.4 Characterization of available Models

2.1.4.1 The PRAM Model

The PRAM model was proposed by Fortune et al. in 1978 (see [FW78a]). It is the simplest parallel
programming model known. But there are some serious defects in its accuracy. It was mainly derived
from the RAM model, which bases itself on the ”Von Neumann” model [vN45]. It is characterized by P
processors sharing a common global memory. Thus it can be seen as a MIMD2 machine. It is assumed
that all processors run synchronously (e.g. with a central clock) and that every processor can access an
arbitrary memory location in one step. All costs for parallelization are ignored, thus the model provides
a benchmark for the ideal parallel complexity of an algorithm.

2.1.4.1.1 Evaluation
The main advantage is the ease of applicability. To reach this simplicity, several disadvantages have
to be accepted. The main drawbacks are that all processors are assumed to work synchronously, the
interprocessor communication is free3 and it neglects the contention when different cells in one memory
module are accessed.

Thus, this model is not suitable for any synchronization algorithm because interprocessor communication
is free.

2.1.4.1.2 Additions to the PRAM Model
There are numerous additions to the PRAM model addressing its main disadvantages. The Module
Parallel Computer (MPC [MV84]) consists of n memory modules with a specific size, where each module
can be accessed by only one processor simultaneously. This models the memory bank contention in
current multiprocessor systems. Other extensions [CZ89, Gib89] are modeling the natural asynchronity
of current systems. The latency of write operations to non-local memory are modeled in the LPRAM
[ACS90] or the BPRAM [ACS89] but they do match the properties of today’s message passing based
clusters4. Also the bandwidth is modeled for PRAM in the DRAM model [LM88]. But the problem
of the unification of all different models, from which each model addresses a specific disadvantage, is
still remaining. Thus, no single addition to the PRAM is suitable to satisfy the needs of modeling the
InfiniBandTM architecture sufficiently.

2Multiple Instruction Multiple Data
3zero latency, infinite bandwidth leads to excessive fine-grained algorithms
4e.g. block-transfers are not possible, the latency is charged for each byte

Torsten Höfler Page 12/86

CHAPTER 2. SOFTWARE SOLUTION 2.1. MODELS FOR PARALLEL COMPUTATION

2.1.4.2 The BSP Model

The Bulk Synchronous Parallel (BSP) model was proposed by Valiant in 1990 [Val90]. The BSP model
divides the algorithm into several consecutive supersteps. Each superstep consists of a computation phase
and a communication phase. All processors start synchronously at the beginning of each superstep. In
the computation phase, the processor can only perform calculation on data inside its local memory5. The
processor can exchange data with other nodes in the communication phase. Each processor may send
at most h messages and receive at most h messages of a fixed size in each superstep. This is called a
h-relation, further on. A cost of g · h (g is a bandwidth parameter) is charged for the communication.

2.1.4.2.1 Evaluation
Latency and (limited) bandwidth are modeled as well as asynchronous progress per processor. A big
disadvantage for modelling barrier operations is the fact that the BSP also assumes special synchronization
hardware (barrier is done in O(1)). Additionally, each superstep must be long enough to send and receive
the h messages6, resulting in some nodes being idle at the end of a superstep. This leads to the problem
that messages received in a superstep cannot be used in the same superstep even if the latency is smaller
than the remaining superstep length.

Because of the implicit synchronization, the BSP model is not suitable for modelling barrier algorithms.
Each superstep begins in a globally synchronous state.

2.1.4.3 The C
3 Model

The C3 model, proposed by Hambrusch et al in 1994 [HK94], was also developed for coarse grained
supercomputers. The model works also by partitioning an algorithm into several supersteps. Each
superstep consists of local computation followed by communication. Supersteps start synchronously
directly after the preceding superstep is finished, this implies that a barrier without any costs is necessary
(see also the BSP model in chapter 2.1.4.2).

2.1.4.3.1 Evaluation
The C3 model evaluates complexity of communication, computation and congestion of the interconnect
for coarse grained machines. Store-and-forward, as well as cut-through routing can be modeled and the
difference between blocking and non-blocking receives is also considered.

But the disadvantages overbalance. The most significant drawback, which prevents the usage of the
model for barrier synchronization, is the assumption that a barrier costs nothing and is implicit. Thus,
the barrier would be modeled as a single empty superstep which makes no sense (see also section 2.1.4.2).
Other drawbacks are that the message exchange can be performed only in fixed length packets and that
the clock speed and bandwidth parameters are not included, so that the model is only valid when the
processor bandwidth and the network bandwidth are equal7. Due to these facts, this model cannot be
used for barrier operation over InfiniBandTM networks and is not investigated further on.

2.1.4.4 The LogP Model

The LogP model [CKP+93] was proposed by Culler et al. in 1993. It was developed in addition to the
PRAM model (see chapter 2.1.4.1) to cover the changed conditions for parallel computing. It reflects
different aspects of coarse grained machines which are seen as a collection of complete computers, each
consisting of one or more processors, cache, main memory and a network interconnect8.

5if this is data from remote nodes, it has been received in one of the previous supersteps
6the greatest h among all nodes!
7e.g. Intel Touchstone Delta
8e.g. the Intel Delta or Paragon, Thinking Machines CM-5 ...

Torsten Höfler Page 13/86

CHAPTER 2. SOFTWARE SOLUTION 2.1. MODELS FOR PARALLEL COMPUTATION

It is based on four main parameters:

• L - communication delay (upper boundary to the latency for NIC-to-NIC messages from one
processor to another)

• o - communication overhead (time that a processor is engaged in transmission or reception of a
single message)

• g - gap (indirect communication bandwidth, minimum interval between consecutive messages,
bandwidth ∼ 1

g
)

• P - number of processors

List 2.4: The four parameters of the LogP model

The parameters of the LogP model can be divided into two layers, the CPU-Layer and the Network-
Layer. The o-parameter can also be subdivided into one parameter on the receiver side (or) and another
on the sender side (os). The according visualization of the different parameters for a given network (e.g.
Ethernet) can be seen in Figure 2.1.

CPU

Network

o s L or

level

time

g

Sender Receiver

g

Figure 2.1: Visualization of the LogP parameters

There are several implicit assumptions taken with these four parameters to make the model fully func-
tional:

• dL
g
e - count of messages that can be in transmission on the network from one to any other processor

in parallel

• L, o and g are measured as multiples of the processor’s clock speed

List 2.5: Additional assumptions in the LogP model

It is easy to understand that developing and programming in the PRAM model is easier than in the
LogP model, but the bigger accuracy of this model should justify the additional effort. There were also
some investigations to find upper bounds to the execution time for PRAM based algorithms on LogP
(coarse grained) machines [LZ95] which can be used to simplify the programming again, but they are not
suitable for synchronization algorithms (see 2.1.4.1).

An additional study [CLMY96] describes options of assessing the network parameters for real-life super-
computers. This can be very helpful to gain a deeper knowledge about the model’s characteristics.

2.1.4.4.1 Evaluation
The LogP model has several advantages over other models. It is designed for distributed memory pro-
cessors and the fact that network speed9 is far smaller than CPU speed. It is easily applicable for a flat
network model10. It encourages careful distribution of computation and overlapping communication as

9this means latency as well as bandwidth
10central switch based, diameter = 1

Torsten Höfler Page 14/86

CHAPTER 2. SOFTWARE SOLUTION 2.1. MODELS FOR PARALLEL COMPUTATION

well as balanced network operations11 which is very profitable for determining the running time of many
applications accurately.

Some small drawbacks are that the whole communication model consists only of point-to-point messages.
This does not respect the fact that some networks (especially InfiniBandTM) are able to perform collective
operations (e.g. multicast) ideally in O(1). The second drawback is that only short fixed-size messages
are modeled, but this can be ignored for the barrier problem.

2.1.4.4.2 Additions to the LogP Model
The LogP model seems to be very promising, thus the additions to the model are examined more in-depth
than for the other models.

2.1.4.4.3 LogGP - Long Messages in LogP
The LogGP model was proposed by Alexandrov et al. in 1995 [AISS95]. It was meant as an addition to
the original LogP model to address its inaccuracy for bigger messages. The LogP model is only suitable
for small fixed size messages, because it uses the inter-frame gap g to express the bandwidth indirectly
(bw ∼ 1

g
). However, this ignores the fact that many modern interconnect technologies have special

support for providing a much higher bandwidth for long messages12. The LogGP model incorporates the
new parameter G into the original model to pay attention to this fact.

This extension will not be investigated any further because there is no necessity for long messages in the
barrier functionality13.

2.1.4.4.4 LoGPC - Modelling Network Contention
The traditional LogP model is only correct if no network contention occurs. But this assumption is
(especially for n-cube networks) not very accurate. Therefore the LoGPC model [MF01] proposes a new
technique to incorporate network contention and the pipelining characteristics of the DMA engine into
the LogP model. The model was developed for k-ary n-cube networks [Aga91]. The author predicts that
the model is easily applicable to other network topologies by changing a single parameter, but this seems
not very precise for a central-switch based architecture.

This extension is quite interesting, but seems to be not adaptable to the special needs of a central-switch
based InfiniBandTM network, because a k-ary n-cube network is not able to behave like a central switch
based architecture.

2.1.4.4.5 LogGPS - Modelling Synchronization
The LogGPS model [IFH01] incorporates an additional delay which is caused by several MPI [For95]
libraries due to the rendezvous protocol which is used for sending long messages. The synchronization
overhead caused by the rendezvous protocol is modeled with the additional parameter S.

This model is only necessary for long messages sent through the MPI layer. Thus this model will not be
investigated any further.

2.1.4.5 Choosing a Model

As described in 2.1, the LogP model is the most accurate model in this specific case. Thus, it is used for
all running time estimations in the following sections.

Several simplifying architectural assumptions can be made without lowering the asymptotical accuracy
of the model heavily.

11no single processor is ”flooded”
12e.g. by pipelining or bulk transfers
13even zero-byte messages are sufficient to notify the status to other nodes

Torsten Höfler Page 15/86

CHAPTER 2. SOFTWARE SOLUTION 2.1. MODELS FOR PARALLEL COMPUTATION

Based on the fact that most clusters operate a central switch connecting all nodes, the properties of this
interconnect can be assumed as follows:

• full bisectional bandwidth

• full duplex operation (parallel send/receive)

• the forwarding rate is unlimited and packets are forwarded in a non-blocking manner

• the latency (L from LogP model) is constant above all messages

• the gap between consecutive messages is much smaller than the overhead to process a message on
the host system ⇒ g from LogP is much smaller than o and so overlaid while sending multiple
messages (see section 3.1 in [CKP+93])

• the overhead (o) is constant for single messages (for simplicity: os = or = o)

List 2.6: Interconnect characteristics

1 2

3 4

Figure 2.2: The ideal interconnect graph connecting 4 nodes

This model can be described as a graph where all nodes are connected to a fully meshed network. An
example is shown in figure 2.2. A nearly ideal interconnect architecture can be manufactured by using
the crossbar switch model, depicted in figure 2.3. This model is widely used to produce actually available
switches.

1 2 3 4

1

2

3

4

Figure 2.3: A crossbar example connecting 4 nodes

The pedantic communication characteristics are defined as follows: The time to send and receive a single
message14 can be approximated to os + L + or, and the time to send n messages15 can be estimated as
os + (n− 1)max{os, g}

16. The time to receive n messages (relative to the first packet sent on the sender
side) can be modeled as os + L + or + (n − 1)max{os, g}.

141 : 1 communication
151 : n communication with enqueuing
16the time os and g can run in parallel

Torsten Höfler Page 16/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

Additionally, some constructs show up frequently and are defined as follows:

fr = max{or, g}

fs = max{os, g}

tr = max{fr, os + L + or}

= max{max{g, or}, os + L + or}

= max{g, os + L + or}

ts = max{fs, os + L + or}

= max{max{g, os}, os + L + or}

= max{g, os + L + or}

With the aforementioned assumptions follows

fr = fs = o

tr = ts = 2o + L

This paper distinguishes between tr and ts in order to emphasize the semantic properties of the algorithms
being analyzed.

2.2 Barrier Algorithms

After defining the model which can be used for analyzing barrier algorithms, the following section describes
all presently published algorithms and their asymptotic behavior for increasing processor counts. The
LogP model is used to predict the asymptotic runtime behavior. The simplifying assumptions named in
section 2.1.4.5 are taken for all further predictions.

The best way to understand each algorithm is to read the description in combination with the given
graphical representation. To gain further knowledge about the algorithms, especially on message passing
based systems, the reader is encouraged to retrace the proposed pseudo-code.

The following sections introduce all currently known barrier algorithms. Each algorithm can be split
up logically into three phases. The algorithm is initialized in phase 1 (e.g. reserving shared objects or
calculating ranks). So it has to be done only once during initialization or reconfiguration (processors
enter or leave) of each communicator. Phase 2, also called ”Check-in-Phase” has to be done on each node
every time when it calls MPI Barrier. All nodes communicate with each other until one or all nodes know
that every node reached its MPI Barrier call. A barrier-identifier is often used to distinguish between
different MPI Barrier calls to avoid race conditions when one processor enters the next barrier before all
other processors left the last barrier - this is called x in the following chapter. Each barrier number is
used once per communicator and incremented for each barrier starting initially with 1. The third and last
phase can be referred to as ”Notification-Phase” and is only needed when not all processors know that
the barrier has been reached by each member of the communicator. The typical case is that one processor
knows that the barrier is reached by each member of its communicator and it has to notify all remaining
processors. The difference in phase 3 leads to a distinction between two types of algorithms. The first
type performs phase 3 as described above (see section 2.2.1) and the second type omits it completely
(see section 2.2.2 on page 28). Section 2.2.3 summarizes all algorithms for future analysis and provides
simplified information about running time and memory usage relative to the processor count P . A proof
of optimality is given in section 2.2.4 followed by a classification of the algorithms in four complexity
groups (section 2.3.5), regarding to the LogP model. One representative of each group is analyzed more
in detail for the runtime and the asymptotical behavior is compared to a practical benchmark result.
Basing on this comprehensive analysis, two new algorithms which efficiently utilize hardware parallelism
are proposed in section 2.2.6 and modeled in the LogP model. The running time for all algorithms is
assessed under the assumption that the LogP model is accurate for the underlying network and that all
nodes arrive simultaneously in their MPI_Barrier() call (balanced case).

Torsten Höfler Page 17/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

2.2.1 Algorithms Performing Phase 3

Phase 3, as described in Section 2.2 can efficiently be implemented as a broadcast (e.g. MPI Bcast).
This operation could especially benefit from hardware broadcast or multicast capabilities which perform
(ideally) in O(1). If this is not capable with the underlying architecture17, standard broadcast algorithms
could be used, which usually scale with O(log(P)) for 1 byte messages. The time which is necessary to
perform a broadcast from one to n nodes is modeled as tbc(P) regardless of the implementation and
architectural details mentioned above.

2.2.1.1 Central Counter

2.2.1.1.1 Description
This algorithm is quite simple and straightforward. Because of its obvious simplicity and the naive
prove for correctness it is implemented quite often. Especially the atomic ”fetch-and-Φ”18 operation is
frequently mentioned related to this barrier. This approach is investigated for the fetch-and-increment19

operation in [FG91] and [GVW89]. One node holds an integer value which is used as central barrier
counter. This integer starts with 0 and is increased by each node once (after it entered the barrier) until
the node count P is reached. The last node sends a message to all other nodes to activate them.

This barrier consists of the two parts counting and notification. Both parts can be optimized indepen-
dently. Optimized algorithms for counting and broadcasting a message are evaluated later. We assume
the easiest case in the following pseudo-code (see listing 2.1) and graphical representation (see figure 2.4).

4320 51

6

Step 1-6 (one fetch and increment for each node, assume node 3 was the last node!):

4320 51

6

Step 6-11 (node 3 sets the finished flag for each node):

1 1 1 1 1

0 1 2 3 4 5

Communication Diagram

9 competing network transactions

time

Figure 2.4: A Central Counter barrier between 6 nodes

2.2.1.1.2 Conclusion
As the algorithm splits up into two phases for each MPI Barrier call, each phase is analyzed apart.
Phase one is critical, because the shared counter is altered by each node. This memory location is called
a hot-spot [PN85]. P − 1 competing network transfers are needed to implement the counter and the
running time would be L+P ·o. These operations have to be atomic on the target to prevent lost-update
problems, resulting in deadlocks. Phase two is also critical, because one node has to inform all other
nodes. Phase one disturbs the transaction scheduling of the memory controller. Regarding to 2.2.1, the
possibilities to perform this broadcast are not mentioned here. Thus, the overall running time of this
operations can be seen as L + P · o + tbc(P − 1). The memory usage is constant (1 byte) per node.

17regardless if it’s provided by hardware or software
18”fetch-and-Φ” is a conceptional term for a collection of atomic operations which change and return a single value in

memory - for example fetch-and-add, fetch-and-swap, fetch-and-inc, ...
19the fetch-and-increment operation takes a value to increment from its caller, increments its memory value and returns

the new value to the caller (some implementations may return the value before incrementing)

Torsten Höfler Page 18/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

// parameters (given by environment)
set p = number of participating processors
set rank = my local id

5

// phase 1 − i n i t i a l i z a t i on (only once)
set x = 0 // the barr ier counter
i f rank == 0 then

// i t s my counter
10 reserve ctr with 1 entry as shared

set ctr = 1
else

reserve f lag with 1 entry as shared

set f lag = 0
15 ifend

// phase 2/3 − central barr ier
set x = x + 1;
i f rank == 0 then

20 wait until ctr == p
else

set loca lctr = fetch and increment ctr on node 0
i f loca lctr == p then

set f lag in a l l nodes to x
25 ifend

wait until f lag >= x
ifend

Listing 2.1: Central Counter in Pseudocode

2.2.1.2 Combining Tree

2.2.1.2.1 Description
The combining tree barrier was introduced by Yew, Tzeng and Lawrie in [YTL87]. It uses a tree to speed
up the central counter barrier. It divides the nodes into subgroups with n members, which synchronize
among each other with a simple shared counter. Every first node of each group spins20 its local counter
which is shared to all others until all nodes reach the barrier (counter == n). When all nodes in the
subgroup reached the barrier, all first nodes form a new group and synchronize among each other. This is
repeated until only one group is left and has finished the synchronization. The first node informs all other
nodes about the barrier completion. Yew reported a group-count (n) of 4 to achieve the best results. A
graphical example as well as pseudocode for this algorithm can be found in figure 2.5 and listing 2.2.

2.2.1.2.2 Conclusion
The combining tree barrier reduces hot spots in memory and network contention. The number of required
network operations is naively seen lowered to lognP steps21. But due to enqueuing during the receive,
the actual execution time under the assumption of the LogP model is (L + n · o) · dlognP e + tbc(P − 1)
and 2 bytes of memory are used per node.

20check the counter frequently
21this is only valid for a fan-out of n - e.g. in a mesh topology, it has to be seen as a naive approximation for all other

cases

Torsten Höfler Page 19/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

4320 51

Step 1-4 (one fetch and increment for each node per group):

group 0 group 1

4 2

4320 51

group 0 group 0

2

Step 5-6:

4 5

21 1 1 1 1 1

Step 6-11:

2

2

0 1 2 3 4 5

Communication Diagram

9 competing network transactions

time

0 1 2 3

Figure 2.5: A combining tree barrier between 6 nodes

Torsten Höfler Page 20/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

set p = number of participating processors
set n = nodes per group // parameter
set rank = my local id

5 // phase 1 − i n i t i a l i z a t i on (only once)
set x = 0 // the barr ier counter

reserve ctr with 1 entries as shared

set ctr = 1
10 reserve f lag with 1 entries as shared

set f lag = 0

set round = 0 // actual round
set relnodeid = 0 // re lat ive nodeid (only active nodes)

15

// phase 2 − barr ier
set x = x + 1;
repeat

set round = round + 1
20 set relnodeid = rank / (nˆ(round−1))

set grpnum = relnodeid div n // group number?
set grprank = relnodeid mod n // my rank in group

// I am out of the game, when I have no
25 // natural number as relnodeid

i f round(relnodeid) != relnodeid then

wait until f lag >= x
ifend

30 i f grprank == 0 then

wait until ctr == n
else

set ctr = fetch and increment ctr on node \
rank−grprank∗nˆ(round−1)

35 wait until f lag >= x
ifend

until round == log(n)(p) or f lag >= x

// phase 3
40 i f rank == 0 then

set f lag in a l l other nodes to x
ifend

Listing 2.2: Pseudocode for Combining Tree Algorithm

Torsten Höfler Page 21/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

2.2.1.3 Tournament

2.2.1.3.1 Description
The Tournament Barrier, proposed by Hengsen et al. in [HFM88] is mostly suitable for shared memory
multiprocessors because it benefits from several caching mechanisms. Nevertheless, the algorithm is
analyzed here. As in the Butterfly (see chapter 2.2.2.1) and the Dissemination Barrier (see chapter
2.2.2.3), different rounds are used. The algorithm is similar to a tournament game. In each round two
nodes play against each other. The winner is known in advance and waits until the looser arrives. The
winners play against each other in the next round. The overall winner (the champion) notifies all others
about the end of the barrier. A graphical and pseudo-code representation can be found in figure 2.6 and
listing 2.3.

Step 1 (pairwise games - the node with the lower id wins) [stage 0]:

4321 50

4321 5

Step 2 [stage 1]:

4321 50

Step 3 [stage 2]:

0

Communication Diagram
0 1 2 3 4 5

8 competing network transactions

4 5

Step 4-8 [stage 3]:

time
0 1 2 3

Figure 2.6: Example for the tournament barrier with 6 nodes

2.2.1.3.2 Conclusion
The algorithm is also subdivided into two parts. Part one (the game) scales with log2P and uses 1 byte
of memory. Part two scales as mentioned in chapter 2.2.1 with tbc(P − 1). Thus the entire runtime can
be estimated with (L + 2 · o) · dlog2P e + tbc(P − 1).

Torsten Höfler Page 22/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

// parameters (given by environment)
set p = number of participating processors
set rank = my local id

5 // phase 1 − i n i t i a l i z a t i on (only once)
reserve f lag with 1 entries as shared

set f lag = 0

// phase 2 − done for every barr ier
10 set true = 1

set fa l se = 0
set round = −1
// repeat log(p) times
repeat

15 set round = round + 1
set peer = rank xor 2ˆround

// I have no partner −> next round . . .
i f peer > p then

20 continue

ifend

// I am the winner
i f rank > peer then

25 wait until f lag == true
set f lag = fa lse

else

set f lag on peer = true
wait until f lag == true

30 ifend

until round > ld(p)

// phase 3 − node 0 ever wins
i f rank == 0 then

35 set f lag in a l l other nodes to true
ifend

Listing 2.3: Pseudo Code for Tournament Barrier

2.2.1.4 f-way Tournament

2.2.1.4.1 Description
The f-way Tournament Barrier bases on the same principle as the Tournament Barrier (section 2.2.1.3).
It was proposed by Grunwald et al. in 1993 [GV94]. The most important difference is that more than
two processors are competing in one game. A graphical representation can be found in figure 2.7. The
pseudo-code is nearly identical to the tournament barrier (see listing 2.3), only with more than two nodes.

2.2.1.4.2 Conclusion
This barrier is suitable for special network topologies with a fan-out of more than one (e.g. torus
networks). But should not scale better on standard central switching-based networks. The algorithm
scales theoretically (with a fan-out of f in each node) with logfP network transactions and 1 bytes of
memory per node, but is practically limited by the network infrastructure which serializes and enqueues
concurrent requests. Thus, the predicted runtime within our model is (L + f · o) · dlogfP e+ tbc(P − 1).

Torsten Höfler Page 23/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

Step 1 (the lower nodeid wins) [stage 0]:

4321 50

4321 5

Step 2 [stage 1]:

0

Communication Diagram
0 1 2 3 4 5

9 competing network transactions

4321 50

Step 3-7 [stage 2]:

time

Figure 2.7: Example for the 4-way tournament algorithm between 6 nodes

2.2.1.5 MCS

2.2.1.5.1 Description
The MCS Tree Barrier was proposed by Mellor-Crummey and Scott in 1991 [MCS91a, MCS91b, SMC94].
It uses also a tree structure and is quite similar to the Combining Tree barrier (see chapter 2.2.1.2). Each
node is assigned to a tree node. The resulting n-ary tree consists of all nodes, each node has an array
of n flags. All, but the top node write to their parent’s node flag when all child nodes wrote the flag to
them. All nodes, which have no children start with the array initialized with true. When the topmost
node’s flag array is completely filled, it notifies the others.

1 1 1 1

Step 1: Communication Diagram
0 1 2 3 4 5

9 competing network transactions

0

1 2 3 4

5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Step 2:
0

1 2 3 4

5

1 1 1 1

1 1 1 1 1 1 1 11 1 1 1

1 1 1

1 1 1 1

Step 3-8:
0

1 2 3 4

5

1 1 1 1

1 1 1 1 1 1 1 11 1 1 1

1 1 1 1

1 1 1 1

time

Figure 2.8: Example of the MCS Tree algorithm between 6 nodes

Torsten Höfler Page 24/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

// parameters (given by environment)
set p = number of participating processors
set rank = my local id
set n = number of childnodes

5

// phase 1 − i n i t i a l i z a t i on (only once)
set x = 0 // the barr ier counter
reserve array with n+1 entries as shared

// −> array [n] acts as barrier reached flag
10

// phase 2 − done for every barr ier
set x = x + 1

// i n i t i a l i z e my flags (f lag == 1 i f no child i s present)
15 for j in 0. .n−1 do

i f p >= (rank ∗ n) + 1 + j then

set array [j] = 0
else

set array [j] = 1
20 ifend

forend

set array [n] = 0
repeat

25 set parent = (rank−1) div n
set s lot = (rank−1) mod n

i f sum(array [0 . . n−1]) == 4 then

i f rank == 0 then

30 set array [n] = 1
else

set array [s lot] in parent to 1
endif

endif
35 until array [n] == 1

// phase 3
i f rank == 0 then

set array [n] in a l l other nodes to 1
40 ifend

Listing 2.4: Example of the MCS Tree algorithm between 6 nodes

2.2.1.5.2 Conclusion
The MCS-Barrier uses a tree structure with a fan-out of n to improve the barrier performance to lognP

concurrent network transactions (only if the network offers a fan-out of n) and n bytes of shared memory
per node in the first part. The second notification part depends as usual on the underlying network
architecture and scales with tbc(P − 1) competing network transactions. The overall execution time for
our model can be predicted with (L + (n + 1) ∗ o) ∗ dlognP e + tbc(P − 1).

Torsten Höfler Page 25/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

2.2.1.6 BST

2.2.1.6.1 Description
The Binomial Spanning Tree (BST) Barrier was proposed by Tzeng et al. in 1997 - [TK97]. It uses a
binomial tree structure22, which reduces the network contention by its principle. The working principle
is quite similar to the MCS Barrier (2.2.1.5) - every processor is assigned to one tree-node and waits until
all children reached their barrier (they notify their parent) and then notifies its own parent. A binomial
tree is built up recursively, the whole tree of step j − 1 is appended to the root node in step j. The
principle is shown in figure 2.9.

This special characteristic is used to avoid contention on single nodes.23 To manage the processor-to-
tree-node assignment, the following numbering scheme is used:

• each node is numbered in binary digits (from 0 to P − 1)

• each node calculates it’s parent by resetting the leftmost ”1” in it’s own id to ”0”

• each node calculates it’s children by adding 2i to it’s own id where i = {i ∈ N ∧ log2id < i <

dlog2P e ∧ id + 2i < P}

A numbered binomial tree with 6 nodes is shown in figure 2.10. Pseudocode for the algorithm can be
found in listing 2.5.

step 0 step 1 step 2 step 3 step 4

Figure 2.9: Example for building a binomial tree

000

001010

100

011

101

Figure 2.10: A numbered binomial tree with 6 nodes (each processor is assigned to one tree node)

2.2.1.6.2 Conclusion
The binomial spanning tree barrier minimizes the concurrency at the root node. One child of the root
node finishes each round. The root node has typically dlog2P e children, so that the root node knows
after dlog2P e steps that all nodes reached the barrier. So the time for check in scales with dlog2P e. The
notification of all nodes scales with tbc(P − 1). Thus, the overall execution time is (L + 2 · o) · log2P +
tbc(P − 1) for all power of two node-counts (P = 2x) and in case of congestion (receiver enqueuing)
(L+3 ·o) · dlog2P e+ tbc(P −1) for all other node-counts. The required memory scales with log2P bytes.

22which is very similar to a hypercube
23due to the distribution of nodes in a binomial spanning tree, each network link is utilized at most once per round if p

is a power of two - for all other node-counts, each link is utilized at most twice

Torsten Höfler Page 26/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

// parameters (given by environment)
set p = number of participating processors
set rank = my local id

5 // phase 1: i n i t i a l i z a t i on
set x = 0 // the barr ier counter
reserve array with p entries as shared

// could be shortened to ld (p)

10 // set a l l array entr ies to ’1 ’
for j in 0. .p−1 do

set array [j] = 1
forend

15 // determine parent (reset leftmost ’1 ’)
set j = 1
while j <= rank do

set j = j ∗ 2
whileend

20

set parent = rank − j /2

// determine children − unset their array entr ies
for j=0..cei l (ld(p))−1 do

25 // ld (0) i s not defined − take a l l entr ies for root node
i f rank == 0 or j > ld(rank) then

set k = rank + 2ˆj
// only for rank + 2ˆj < p
i f k < p then

30 array [k] = 0
ifend

ifend

forend

35 // phase 2: check in phase
// wait unt i l a l l children reached their barr ier
for j in 0. .p−1 do

wait until array [rank] == 1
forend

40

i f rank != 0 then

set array [rank] in node parent to 1
ifend

45 // phase 3: release phase
// use array [0] as f inished indicator ,
// because node 0 i s the root −
// nobody has i t as chi ld node
i f rank == 0 then

50 set array [0] in a l l nodes 0;
else

wait until array [0] == 0
ifend

Listing 2.5: Pseudocode for BST Barrier

Torsten Höfler Page 27/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

2.2.2 Algorithms Omitting Phase 3

2.2.2.1 Butterfly

2.2.2.1.1 Description
The Butterfly Barrier was proposed by Brooks in 1986 [Bro86]. The original algorithm uses a single
shared array of flags (shared memory) and performs several stages of pairwise synchronization. The used
algorithm can be described easily in the following way:

1. wait until previous stages finished (until my flag is false)

2. set my flag to true (I am currently synchronizing)

3. wait for the partner’s flag to become true (the partner is ready)

4. set the partners flag to false (done)

After the initial synchronization finished the whole process is repeated w = log2P times, each time is
called a stage. The stages (s) are numbered ascending, the very first stage starts with 0. Each node pi

synchronizes in each stage with node pj where j = i XOR 2s (see figure 2.11). This method only works
for p = 2x; x ∈ N (p = power of two). For all other number of nodes, the necessary pairs are represented
virtually by the other nodes (e.g. to synchronize 6 nodes, 2 additional virtual nodes are necessary). Thus
this algorithm performing worst with any number of nodes, slightly bigger than a power of two.

The array mentioned above has to have the dimensions P · log2P . One column per processor and one
row for each round.

This implementation does not scale very well on a message passing based system (because of the shared
array). After applying all modifications to ensure scalable operation on message passing based systems,
the algorithm looks very similar to the Pairwise Exchange (section 2.2.2.2). Thus, this paper does not
propose a pseudo code.

Step 1 (pair synchronization - node 0 and 1 are virtually 6 and 7) [stage 0]:

4321 50

4321 5

Step 2 [stage 1]:

4321 50

Step 3 [stage 2]:

0

Communication Diagram
0 1 2 3 4 5

6 competing network transactions

time

Figure 2.11: The Butterfly algorithm - the shared array was left out to improve the clearness

2.2.2.1.2 Conclusion
The barrier’s competing network operations scale best with processor numbers which are a power of
two with log2P . The worst case is when the processor number is slightly higher than a power of two
with 2 · log2P because nearly all processors must synchronize twice. Thus the overall performance is
(L + 2 · o) · log2P for P = 2x and (2 · (L + 2 · o)) · dlog2P e for all other P (worst case). The memory
used by the shared array of flags scales with P · log2P in size. Due to the above mentioned problems, the
Pairwise Exchange Barrier (chapter 2.2.2.2) should be implemented in message passing based systems
instead of the Butterfly Barrier.

Torsten Höfler Page 28/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

2.2.2.2 Pairwise Exchange With Recursive Doubling

2.2.2.2.1 Description
This algorithm was proposed in [GTNP02] and will be discussed in the following section. All nodes group
themselves in pairs (node 0 and node 1 for each pair) during the first part of the pairwise exchange
algorithm. The barrier-identifier x, described in chapter 2.2 is used to avoid several race conditions.

In the first part, all nodes write their value of x to the corresponding peer. After node 0 and node 1
of each pair have received the correct barrier value24 from their peer, they continue and enter the next
stage. Each group peers with another group of two processors and each member of the group writes the
barrier number to its corresponding peer in the other group. This procedure is recursively repeated until
all nodes form one big group. So this algorithm uses blog2P c network write operations per node.

Thus this works only for power of two nodes. For all other node counts P , the biggest power of two
y = 2z, z ∈ N is calculated which is smaller than P . This creates two groups, namely group A including
y nodes and group B with the remaining nodes. Every single node in group B pairs with another node
in group A. When a node of group B reaches the barrier it writes the barrier number to its peer node in
the group A. Each of these nodes in group A waits until it receives the barrier number from the second’s
group partner before it starts the normal pairwise exchange algorithm. When the barrier is finished, each
peer node in group a notifies its partner that the barrier is finished. This extension for non power of two
node counts increases the latency to blog2P c + 2 network write operations.

Figure 2.12 gives a graphical representation of a barrier with 6 nodes. After step 4, node 0 has all necessary
information (that all nodes entered the barrier already) - node 1,2 and 4 communicated directly with
node 0 and the other nodes finished before node 1,2 or 4.

Step 1:

4321 50

4321 50

group A group B

1

Step 2: (pairwise exchange starts)

1 1 1 11 1

4321 50

1 1 1 11 1

Step 3:
group 2group 1

1 1 1 1

4321 50

1 1 1 11 11 1 1 1 1 1

Step 4:

0 1 2 3 4 5

Communication Diagram

4 competing network transactions

1

time

1 1 1 1 1 1

1 1 1 1 1 1

111111 1 1 1 1

1 1 1 1 1

11

1 1 1 1 1 1

1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.12: Example for the pairwise exchange algorithm between 6 nodes

2.2.2.2.2 Conclusion
The algorithm uses a maximum of blog2P c+2 network writes and P bytes memory per node. The overall
runtime can be estimated with (L+2 ·o) · log2P for all P = 2x and with (L+2 ·o) · blog2P c+2 · (L+2 ·o)
for other values of P (worst case). Thus, the algorithm can be used to exploit the advantages of RDMA
operations efficiently.

24the currently active barrier number or each number higher than this

Torsten Höfler Page 29/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

// parameters (given by environment)
set p = number of participating processors
set rank = my local id

5 // phase 1 − i n i t i a l i z a t i on (only once)
reserve array with p entries as shared

for i in 0. .p−1 do

set array [i] = 0
forend

10 set x = 0 // the barr ier counter
y = 2ˆfloor (ld(p)) // the 2ˆz count

// barr ier − done for every barr ier
set x = x + 1

15 i f rank >= y then

// I am in group b, my partner i s node i−y in group a
set array [rank] in node rank−y to x
// wait for not i f icat ion from partner
wait until array [rank] >= x

20 else

// I am in group a
i f p−y > rank then

// I have a partner in group b
// wait for partner

25 wait until array [rank+y] >= x
ifend

// the pairwise exchange algorithm
set round = −1

30

// repeat log(p) times
repeat

set round = round + 1

35 set peer = rank XOR 2ˆround

set array [rank] in node peer to x
wait until array [peer] >= x

until round == (log(y)−1)
40

i f p−y > rank then

// I have a partner in group b
// notify partner
set array [rank+y] in node rank+y to x

45 ifend

ifend

Listing 2.6: Pseudocode for the pairwise exchange barrier

2.2.2.3 Dissemination

2.2.2.3.1 Description
The Dissemination Barrier, introduced by Hengsen, Finkel and Manber in 1988 [HFM88], is mostly an
improvement of the Butterfly Barrier for non power of two processor counts. In every round s, each
processor pi synchronizes with pj where j = (i+2s) mod P . Each processor sets the flag in the cyclically

Torsten Höfler Page 30/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

next processor to x and waits for the circular previous processor to set its own flag to a value greater
than x. The algorithm is basically the same as used in the butterfly barrier but with different partners.

The implementation with a central shared array does not scale very well on a message passing based
system. Thus this paper proposes a more suitable solution for message passing systems.

Step 1 [stage 0]:

4321 50

4321 5

Step 2 [stage 1]:

4321 50

Step 3 [stage 2]:

0

0 1 2 3 4 5

Communication Diagram

3 competing network transactions

a

b

a
b

a
b
c
d

a
b
c
d

time

Figure 2.13: Dissemination Barrier with 6 processors

// parameters (given by environment)
set p = number of participating processors
set rank = my local id

5 // phase 1 − i n i t i a l i z a t i on (only once)
set x = 0 // the barr ier counter
reserve array with p entries as shared

for i in 0. .p−1 do

set array [i] = 0
10 forend

// barr ier − done for every barr ier
set round = −1
set x = x + 1

15 // repeat log(p) times
repeat

set round = round + 1

set sendpeer = (rank + 2ˆround) mod p
20 set recvpeer = (rank − 2ˆround) mod p

set array [rank] in node sendpeer to x
wait until array [recvpeer] >= x

until round >= log(p)−1

Listing 2.7: Pseudocode for the Dissemination Barrier

2.2.2.3.2 Conclusion
The Dissemination Barrier scales better than the Butterfly Barrier also for non power of two processor
counts with dlog2P e competing network transactions. The overall runtime can be predicted as (L + 2 ·
o) · dlog2P e. The algorithm uses P bytes of memory per node.

Torsten Höfler Page 31/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

2.2.3 Summary of Algorithms

Table 2.1: Summary Table
Algorithm Network operations Complexity Memory Complexity
Central Counter L + Po + tbc(P − 1) O(P) 1 O(1)
Combining Tree (L + no)dlognP e + tbc(P − 1) O(nlognP) 2 O(1)
Tournament (L + 2o)dlog2P e + tbc(P − 1) O(log2P) 1 O(1)
f-way Tournament (L + fo)dlogfP e + tbc(P − 1) O(flogfP) 1 O(1)
MCS (L + (n + 1)o)dlognP e + tbc(P − 1) O(nlognP) P O(P)
BST (L + 3o)dlog2P e + tbc(P − 1) O(log2P) dlog2P e O(log2P)
Butterfly (2(L + 2o))dlog2P e O(log2P) P dlog2P e O(Plog2P)
Pairwise Exchange (L + 2o)blog2P c + 2(L + 2o) O(log2P) P O(P)
Dissemination (L + 2o)dlog2P e O(log2P) P O(P)

The running time of an algorithm depends mainly on the number of network send operations25 and
the network congestion. Another limiting constraint is the consumed memory per node. Thus, table
2.1 summarizes the different algorithms and puts the number of performed network operations and the
required amount of memory per node in the context. The tbc parameter is explained in section 2.2.1.

According to our model (see section 2.1), the theoretically best algorithms with regards to the number
of network sends26 are the Dissemination Barrier and the Pairwise Exchange Barrier. Both nearly reach
a complexity of L · log2P . The optimal complexity for a barrier algorithm in our model is deducted in
the next section.

2.2.4 Proof of Optimality

The optimality of algorithms scaling with O(log2P) is proven by induction. All preconditions are already
defined in our model (see section 2.1). The algorithms use several (limited) rounds to achieve their tar-
gets to synchronize all nodes. Each node can exactly perform one send and one receive per round. To
find a lower bound to this problem, a discovery algorithm is modeled. The information, that one node
reached the barrier has to be transported to all other nodes. Each discovered node has the information
that the root (starting) node entered its barrier function. So this problem gives a lower border to the
problem that all nodes discover that one node reached the barrier function. This is also a lower bound
to the general barrier problem (all nodes know that all other nodes reached their barrier function). The
discovery process is shown in figure 2.9 and creates a binomial tree. This leads to Lemma 2.1.

Lemma 2.1: A maximum of 2k nodes are discovered in round k.

An induction over k is used to proof Lemma 2.1. nk is the number of discovered nodes in round k.
Each node can send one notification to another node and receive one notification per round.

Claim: nk = 2k

Proof:
k = 0: n0 = 20 = 1 → correct!
k → k + 1: nk+1 = 2k+1

nk+1 = 2 · 2k → correct! (see model)

→ Lemma 2.1 is correct and log2P is a lower bound to the barrier problem.

25in our model, the CPU is expected to be much faster than the network and the performed calculations in the algorithms
are slight

26which is expected to dominate the whole operation in time

Torsten Höfler Page 32/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

2.2.5 Evaluating the LogP Predictions for TCP/IP

All barrier algorithms have been subdivided into four groups categorized by their runtime complexity
inside the LogP model. This section shows benchmark results for each of the application classes. The
four groups are:

1. O(P) ⇒ Central Counter [FG91, GVW89]

2. O(n · lognP) ⇒ Combining Tree [YTL87], f-way Tournament [GV94] and MCS [MCS91a]

3. O(log2P) with broadcast ⇒ Tournament [HFM88] and BST [TK97]

4. O(log2P) without broadcast ⇒ Butterfly [Bro86], Pairwise Exchange [GTNP02] and Dissemination
[HFM88]

All algorithms have been implemented in a new COLL component within the Open MPI framework as
described in section 1.4.1. The selection of different algorithms and the passing of parameters (mainly
the group size n for the Combining Tree Barrier) was realized by utilizing the mca_parameter functions,
which can be used to parametrize the modules during runtime.

The resulting code was executed on our local cluster (CLiC). It consists of 528 Pentium III 800 MHz
nodes interconnected with an Extreme Black Diamond 6x96-Port Fast Ethernet switch. This switch
satisfies nearly all the requirements stated in section 2.1.4.5.

The measurements were taken using the PMB2.2.1 [Pal00]. All results and the corresponding evaluation
in terms of the LogP model are shown in the following sections.

2.2.5.1 Central Counter

The central counter is already implemented in the Open MPI framework because the run-time for small
sets of processors is extremely low, even if the scaling with processor count is suboptimal. Thus, the
Open MPI framework defines a threshold processor number (as MCA parameter) to change the used
algorithm from the central counter to another logarithmic implementation. This was disabled during the
tests to ensure that only the central counter is used. The results and the LogP prediction are shown in
figure 2.14. Phase 1 is finished after

rtphase1 = os + L + (P − 2)fr + or

whereby fr = max{or, g} (as stated in section 2.1.4.5). Phase 2 starts at T = rtPhase1 and the runtime
until the last node is notified can be predicted with

rtphase2 = os + (P − 2)fs + L + or

whereby Node 0 finished the barrier after:

rtnode0 = rtphase1 + os + (P − 2)fs

= 2os + or + L + (P − 2)fr + (P − 2)fs

Node x({x > 0;x < P − 1}) finishes after:

rtnodex = rtphase1 + os + L + (x − 1)fs + or

= 2(os + L + or) + (P − 2)fr + (x − 1)fs

The last Node (P − 1) and the whole barrier finishes after:

rt = 2(os + L + or) + (P − 2)fr + (P − 2)fs

Torsten Höfler Page 33/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70

ru
nt

im
e

in
 m

ic
ro

se
co

nd
s

(r
t)

processors (P)

Central Counter
rt(P)

P0

P1

P2

P3

P4

P5

os

os

os

os

os

fr = max(or , g)

L

fs = max(os , g)

rf rf rf rf
or os

L

L
L

L

L

L L

L
L

L

sf sf sf sf

or

or

or

or

or

Phase 1 Phase 2

Figure 2.14: Central Counter

2.2.5.1.1 Influence of the Benchmark Loop
The Pallas Benchmark uses a loop (default repetitions: b = 0; b < 1000; b++), to measure the time spent
inside the barrier operation. This loop could influence the results, because some nodes may enter the
next barrier (b + 1) before all nodes finished the barrier (b). This occurs in the central counter, because
P1 finishes the barrier after:

rt = 2(os + L + or) + (P − 2)fr

and sends its packet for barrier b + 1 to P0, but P0 is still sending packets within barrier b. The first
packet arrives and is enqueued by the MPI library because no matching receive was posted yet. P0 posts
the first receive after it finishes barrier b. The operating system processed the message already and MPI
stored it in a buffer, so fr has been paid already (by delaying barrier b) for the first messages, when P0
enters barrier b+1. This adds a constant overhead to barrier b in each round (processing or for messages
of barrier b + 1), but does not change the asymptotic behavior.

rt can be simplified under the assumptions taken in 2.1.4.5 and a large processor count P :

rt = 2(os + L + or) + (P − 2)fr + (P − 2)fs

o = or = os

fr = fs = o (o À g)

rt ≈ 2(2o + L) + 2o(P − 2)

≈ 2(L + Po)

Thus, the graph for the runtime (rt) should depict as a linear function.

Torsten Höfler Page 34/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

2.2.5.2 Combining Tree

The Combining Tree algorithm, described in section 2.2.1.2, is used to represent an O(n·lognP) algorithm.
The runtime for the first phase in the LogP model can be predicted as shown in figure 2.15 with:

rtphase1 = (os + L + fr(n − 2) + or) · dlognP e

as an upper bound. ∀P 6= nx (x ∈ N) the running time for phase 1 is slightly smaller.

The second part, denoted as tbc(P − 1), uses the binomial tree algorithm in Open MPI and is analyzed
in figure 2.15.

P0

P1

P2

P3

P4

P5

P6

P7

P8

os

os

os

os

os

os fr = max(or , g)

fs = max(os , g)

rf
L

L

rf
L

L

rf
L

L

os

os

rf

L

L

or

or

or

or

P0

P1

P2

P3

P4

P5

P6

P7

os

fr = max(or , g)

fs = max(os , g)

orL

sf

or

os

or

sf

or

sf

or

os

or

os

or

Figure 2.15: LogP model for Combining Tree and Binomial Broadcast (n = 3)

The runtime can be predicted as:

tbc = os + dlog2P e · max{fs, os + L + or} + L + or

Thus, the whole runtime rt can be seen as:

rt = (os + L + fr(n − 2) + or) · dlognP e + os + dlog2P e · max{fs, os + L + or} + L + or

rt can be simplified under the assumptions taken in 2.1.4.5 and a large processor count P :

rt ≈ (L + no) · dlognP e + dlog2P e · (2o + L)

≈ log2P · (2o + L)

There are different possibilities to assess the n (group size) parameter. To evaluate the influence on
runtime, measurements were taken in the range 2..5. The benchmark results and the fitted functions are
shown in figure 2.16. Another interesting result (already mentioned in [YTL87]) is that n = 4 seems to
be the best choice for n. This is confirmed by our model and the fitted parameters as a global minimum,
thus a group size of 4 is chosen for all future comparisons.

2.2.5.3 Tournament Barrier

The Tournament Barrier which was described in section 2.2.1.3 is chosen to represent the class of O(log2P)
algorithms, which perform the last step of notifying all other nodes, typically by broadcasting to them.

Torsten Höfler Page 35/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60

ru
nt

im
e

in
 m

ic
ro

se
co

nd
s

(r
t)

processors (P)

rt2(P)
Combining Tree (n=2)

rt3(P)
Combining Tree (n=3)

rt4(P)
Combining Tree (n=4)

rt5(P)
Combining Tree (n=5)

Figure 2.16: Measured rt Values

P0

P1

P2

P3

P4

P5

P6

P7

os

os

os

os

or

or

or

or os

os

or

or

os

or

Figure 2.17: LogP for the Tournament Barrier

The LogP prediction depicted in figure 2.17 can be described as (∀P = 2x (x ∈ N), for all other P , the
running time is slightly lower):

rt = max{fr, os + L + or} · dlog2P e + tbc

The Binomial Tree is used again for broadcasting at the end:

tbc = os + dlog2P e · max{fs, os + L + or} + L + or

Assuming the usual simplifications:

rt = os + L + or + 2 · max{fr, os + L + or} · dlog2P e

≈ 2o + L + 2(2o + L) · log2P

≈ (4o + 2L) · log2P

The measured values and the accordingly matched functions are shown in 2.18.

2.2.5.4 Dissemination Barrier

The Dissemination Barrier serves as an example for barrier algorithms of the complexity class O(log2P)
which do not have to perform a broadcast phase at the end, was previously proven to give an optimal

Torsten Höfler Page 36/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10 20 30 40 50 60 70

ru
nt

im
e

in
 m

ic
ro

se
co

nd
s

(r
t)

processors (P)

Tournament Barrier
rt(P)

Figure 2.18: Tournament Barrier

solution to the barrier problem [HMMR04]. So we expect this barrier to achieve the best results. The
algorithm was described in section 2.2.2.3. The LogP model is shown in figure 2.19 and the runtime can

P0

P1

P2

P3

P4

P5

os

os

os

os

os

os or

or

or

or

or

or os

os

os

os

os

os or

or

or

or

or

or

os

os

os

os

os

os

or

or

or

or

or

or

Figure 2.19: LogP for the Dissemination Barrier

be predicted with

rt = max{fr, fs, os + L + or} · dlog2P e

With the usual simplifications, the runtime behaves asymptotically as follows

rt = (2o + L) · dlog2P e

No broadcast step is needed to notify all participating nodes. The benchmark results and a fitted function
of the upper bound are shown in figure 2.20. The runtime increases in steps, where each step starts at a
power of two processor count.

2.2.5.5 Comparison of the Different Algorithms

In sections 2.2.1.1 to 2.2.5.4 it was shown that the LogP model is very accurate to predict the asymptotic
behavior of barrier algorithms for systems which comply with the assumptions taken by the model27.
The Dissemination algorithm seems to be the best solution for the barrier problem on LogP compliant
systems. All measured data up to 66 nodes are shown in figure 2.21. Some results of the benchmarks

27the asymptotic standard error has been less than 5%

Torsten Höfler Page 37/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70

ru
nt

im
e

in
 m

ic
ro

se
co

nd
s

(r
t)

processors (P)

Dissemination
rt(P)

Figure 2.20: Dissemination Barrier

Table 2.2: Results for big Numbers of Processors
Algorithm 128 nodes 256 nodes
Central Counter 4594.50µs 4909.67µs

Combining Tree 4009.79µs 4343.63µs

Tournament 3642.54µs 4378.77µs

Dissemination 1904.57µs 1977.12µs

Open MPI 3559.88µs 4226.88µs

conducted on 128 and 256 nodes are summarized in table 2.2. The results for Open MPI were measured
using the standard implementation switching automatically between central counter and Binomial Tree.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70

ru
nt

im
e

in
 m

ic
ro

se
co

nd
s

(r
t)

processors (P)

Central Counter
Combining Tree (n=4)

Tournament Barrier
Dissemination

Open MPI

Figure 2.21: Comparison of all Barrier Algorithms

2.2.6 Two new Algorithms for Barrier Synchronization

The following two new algorithms are proposed to leverage the implicit hardware parallelism of InfiniBand
and to benefit from the availability of multiple network interfaces to perform the barrier. A barrier
operation can gain advantage from multiple interfaces as defined in the InfiniBandTM standard28. The
n-way Dissemination and the n-wise exchange algorithm are described, analyzed and compared in the
following sections.

28the InfiniBandTM standard defines two interfaces per HCA

Torsten Höfler Page 38/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

Table 2.3: Peer Hosts for the 2-way Dissemination
Node Round speer1 speer2 rpeer1 rpeer2

0 0 1 2 8 7
1 0 2 3 0 8
... 0

...
...

...
...

8 0 0 1 7 6

0 1 3 6 6 3
1 1 4 7 7 4
... 1

...
...

...
...

8 1 2 5 5 2

2.2.6.1 The n-way Dissemination Algorithm

The n-way Dissemination Barrier is related to the Dissemination Barrier, proposed by Hengsen et al. in
1988 [HFM88]. It enhances the Dissemination Barrier to be more flexible in different environments. An
additional parameter n defines the number of communication partners in each round. Thus, the original
algorithm typifies the 1-way Dissemination Barrier (n = 1).

In each round every node p sends n packets to notify n other nodes that it reached its barrier function
and is waiting for the notification of n other nodes. At the beginning of a new round r, node p calculates
the peer nodes for all {i ∈ N; 0 < i < n} as follows:

speeri = (p + i · (n + 1)r) mod P (2.1)

whereby P is the number of nodes participating in the barrier. The peers to wait for are also determined
each round:

rpeeri = (p − i · (n + 1)r) mod P (2.2)

An example for n = 2 and P = 9 is given in figure 2.22. The communication pattern is shown in table
2.3 for clearness.

1 2 3 4 5 6 7 80

0 1 2 3 4 5 6 7 8

Round 0:

Round 1:

Figure 2.22: Example of the 2-way Dissemination Barrier

A possible pseudo-code for an RDMA-based or shared memory implementation is given in listing 2.8.

The communication behavior is analyzed with the LogP model and shown in figure 2.23. This figure
assumes that g > os + L + or and the send or receive operations have to wait for the network. ∀g <

os + L + or, the gaps in the figure would vanish. Accordingly, the overall running time of this algorithm

Torsten Höfler Page 39/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

// parameters (given by environment)
set n = 3 // parameter
set p = number of participating processors
set rank = my local id

5

// phase 1 − i n i t i a l i z a t i on (only once)
set x = 0 // the barr ier counter
reserve array with p entries as shared

for i in 0. .p−1 do

10 set array [i] = 0
forend

// barr ier − done for every barr ier
set round = −1

15 set x = x + 1

// repeat log n(p) times
repeat

set round = round + 1
20

for i in 1. .n do

set sendpeer = (rank + i ∗(n+1)ˆround) mod p
set recvpeer = (rank − i ∗(n+1)ˆround) mod p
set array [rank] in node sendpeer to x

25 wait until array [recvpeer] >= x
forend

until round = cei l (log(p)/log(n))

Listing 2.8: Pseudocode for the n-way Dissemination Barrier

o
s

o
s

o
s

o
s

o
s

o
s

o
s

o
s

o
s

o
r

o
r

o
r

o
r

o
r

o
r

o
r

o
r

o
r

o
s

o
s

o
s

o
s

o
s

o
s

o
s

o
s

L

L

L

L

L

L

L

L

L

gs

o
s

g
r

g
r

o
r

o
r

o
r

o
r

o
r

o
r

o
r

o
r

o
r

o
s

o
s

o
s

o
s

o
s

o
s

o
s

o
s

o
s

g
r

o
r

o
r

o
r

o
r

o
r

o
r

o
r

o
r

o
r

gs

o
r

o
r

o
r

o
s

P1

P0

P2

P3

P4

P5

P6

P7

P8

L

L

L
L

L

L

L

L

L

o
r

o
r

o
r

o
s

o
r

o
s

o
r

o
r

o
s

o
s

o
s

o
s

o
s

o
s

round 0 round 1

Figure 2.23: LogP Analysis of the 2-way Dissemination Barrier

Torsten Höfler Page 40/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

with respect to the LogP model can be estimated with29:

rtn(P) = n · max{g, os + L + or} · dlogn+1P e

and the asymptotic behavior can be assessed as

rtn(P) = O(n · dlogn+1P e)

Assuming, that m network paths30 exist and are used to simultaneously send a message to each of the
peer nodes p, the parameters g and L can be divided by m (m ≤ n) and the runtime (by neglecting the
scheduling overhead) changes to:

rtmn (P) = n · max

{

g

m
, os +

L

m
+ or

}

· dlogn+1P e

The influence of the network specific constants g and L declines with increasing m while the host de-
pendent send and receive overhead o{r,s} remains constant. For multiple networks i (i ∈ N; 0 < i < m),
offering different LogP parameters gi and Li, the biggest factors g = max{gi} and L = max{Li} have to
be used for modeling (e.g. using Fast Ethernet and InfiniBandTM , the values for Fast Ethernet have to
be used).

This equation can be simplified for a high network parallelism (big m) in the following way

rtm(P) = n · (os + or) · dlogn+1P e

and the aforementioned asymptotical behavior of O(n·dlogn+1P e) remains valid also for massively parallel
networks.

2.2.6.1.1 Choosing the Parameter n

The influence of the parameter n can be assessed by the already mentioned equation of rt for a constant
P and variable n. If n < m, only n links are used and m − n links remain idle.

rtPm(n) = n · max

{

g

min{m,n}
, os +

L

min{m,n}
+ or

}

· dlogn+1P e

To exploit the whole network parallelism, the n should be chosen equal or bigger than m. The runtime
∀n ≥ m is given by the strictly monotone increasing function

rtPm(n) = max
{

g ·
⌈ n

m

⌉

, n · os + L ·
⌈ n

m

⌉

+ n · or

}

· dlogn+1P e

which has its global minimum for n = m. Therefore the ideal group size n for a system offering m

independent LogP compliant links is m.

2.2.6.2 The n-wise Exchange Algorithm

The n-wise Exchange Barrier is an extended version of the pairwise exchange barrier with recursive
doubling [GTNP02]. It enhances the algorithm regarding to its flexibility by adding a new parameter
n. n constitutes the number of communication partners in each round of the algorithm. The original
pairwise exchange algorithm used n = 1 to achieve an ideal solution inside the LogP model. If any network
parallelism is assumed31, this algorithm can be enhanced by adjusting n to the given environment.

The algorithm for all nodes p ∈ P splits up into three phases. Each node calculates its position in
the barrier, which results in two groups [GTNP02], one acting in the main game, and one waiting for
notification. The main group consists of Pm = max{(n + 1)i} (i ∈ N; (n + 1)i ≤ P) nodes and the
Pr = P − Pm < P

n+1 remaining nodes form the waiting group.

The whole process for n = 2 is depicted in figure 2.24. Every node pj ∈ Pr contacts an appropriate node

29note: the occurrence of a gap before sending/receiving the first packet is assumed to simplify the equations
30e.g. devices, physical lanes
31e.g. multiple network interfaces

Torsten Höfler Page 41/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

1 2 3 4 5 6 7 80 9 10
P

m
P

r

1 2 3 4 5 6 7 80 9 10

Round 0:

1 2 3 4 5 6 7 80 9 10

Round 1:

1 2 3 4 5 6 7 80 9 10

Round −1:

Round 2:

Figure 2.24: Example of a 2-wise Exchange barrier

pi ∈ Pm (0 ≤ i < j < P) to notify it that the barrier call is reached (round -1). After a node in the main
group was notified by its peer, the node starts with the main algorithm (round 0 in figure 2.24). This
main part is subdivided into logn+1Pm rounds. Assuming round number k, (n + 1)k nodes form a group
in each round k and notify the other group members (round 0 and 1 in the figure). After the main phase
is finished, the nodes Pr are notified and leave the barrier call (round 2 in the figure). A pseudocode to
realize this functionality is given in listing 2.9.

The running time behavior of the n-wise Exchange algorithm for the worst case, if Pm 6= P is shown in
figure 2.25, and can be predicted with the following equation32:

o
s

o
s

o
r

o
r

o
s

o
s

g
r

o
r

o
r

gs

o
s

o
s

o
s

g
r

o
r

gs

o
r

g
r

o
s

o
s

o
s

o
r

o
r

o
r

o
s

g
r

o
s

o
s

o
s

o
r

o
r

o
r

o
s

o
s

o
s

o
s

o
r

o
s

o
s

o
s

o
r

o
r

o
s

o
s

o
s

o
r

o
r

o
s

o
s

o
r

o
r

g
r

o
s

o
s

o
s

o
s

o
s

g
r

o
r

o
r

o
s

o
s

o
r

o
r

gs

o
s

gs

o
s

o
s

o
r

o
r

o
r

o
r

o
r

o
s

o
r

o
r

o
r

o
r

o
r

o
r

o
s

o
r

o
r

o
r

o
r

o
s

o
s

o
r

o
r

P1

P0

P2

P3

P4

P5

P6

P7

P8

P9
P10

L

L
L

round 1round 0

Figure 2.25: LogP Analysis of the 2-wise Exchange Barrier

rtn(P) = (n + 2) · max{g, os + L + or} · blogn+1P c

This shows directly that the n-wise Exchange Barrier performs slightly worse than the n-way Dissemina-
tion because:

n · dlognP e ≤ (n + 1)b·lognP c < (n + 2) · blognP c

32note: the occurrence of a gap before sending/receiving the first packet is assumed to simplify the equations

Torsten Höfler Page 42/86

CHAPTER 2. SOFTWARE SOLUTION 2.2. BARRIER ALGORITHMS

// parameters (given by environment)
set n = 3 // parameter
set p = number of participating processors
set rank = my local id

5

// phase 1 − i n i t i a l i z a t i on (only once)
set x = 0 // the barr ier counter
reserve array with p entries as shared

for i in 0. .p−1 do

10 set array [i] = 0
forend

// barr ier − done for every barr ier
set round = −1

15 set x = x + 1

// border −> biggest ((n+1)ˆx)−1<=p (for a l l x in N)
set border = 1
set nn = n+1

20 repeat

set border = border + 1
set nn = nn ∗ (n+1)

until nn > p
border = (n+1)ˆ(border − 1)

25

i f rank >= border then

// I am in group 2
set array [rank] in node rank−border to 1

else

30 // I am in group 1
i f rank + border < p then

// I have a partner in group 2
wait until array [rank+border] = 1

ifend

35

repeat

set round = round + 1
// actual group size
set grpsize = (n+1)ˆ(round+1)

40 // my group number
set grpnum = rank div grpsize
// the maximum rank in my group
set maxgrp = (grpnum + 1)∗grpsize−1
// the minimal rank in my group

45 set mingrp = grpnum∗grpsize
for i in 1. .n do

offset = i ∗(n+1)ˆround
set peer = rank + offset
// violated group borders?

50 i f peer > maxgrp
set peer = mingrp + (peer − maxgrp − 1)

ifend

set array [rank] in node peer to round

wait until array [peer] >= round

55 forend

until round = floor (log(p)/log(n))
ifend

Listing 2.9: Pseudocode for the n-wise Exchange BarrierTorsten Höfler Page 43/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

The optimal assessment of parameter n is identical to the n-way Dissemination Barrier and can be found
in section 2.2.6.1.1.

2.2.6.3 Proof of Optimality

The optimality in running time of the newly introduced algorithms for m available parallel interfaces and
n = m is proven by induction. Again, the same preconditions, described in section 2.1 are assumed. The
algorithms are divided into a limited number of distinct rounds for modeling purposes. Each node can
exactly issue m sends and receives in parallel in each round, os and or are neglected.

To find a lower bound to this problem, a discovery algorithm is modeled. The information that one node
reached the barrier has to be transported to all other nodes. Each discovered node has the information
that the root (starting) node entered its barrier function. So this problem gives a lower border to the
problem that all nodes discover that one node reached the barrier function. This is also a lower bound to
the general barrier problem (all nodes know that all other reached their barrier function). The discovery
process for m = 2 is shown in figure 2.26 and creates a binomial tree with a fan-out of m. This leads to

step 0 step 1 step 2

Figure 2.26: Binomial Discovery Tree for a fan-out of 2

Lemma 2.2.

Lemma 2.2: A maximum of (m + 1)k nodes is discovered in round k.

An induction over k is used to proof Lemma 2.2. pk is the number of discovered nodes in round k.
Each node can send m notifications to m other nodes and receive m notifications per round.

Claim: pk = (m + 1)k

Proof:
k = 0: p0 = (m + 1)0 = 1 → correct!
k → k + 1: pk+1 = (m + 1)k+1

pk+1 = (m + 1) · (m + 1)k → correct! (see model)

→ Lemma 2.2 is correct and logm+1P is a lower bound to the barrier problem.

2.3 Proposal of a Model for InfiniBandTM

As described in the analysis of the different models (see 2.1.4), the LogP model reflects the needs to
model an InfiniBandTM architecture quite well. The main assumptions, that each node consists of a
complete ”Von Neumann” computer with its processor, cache, memory, and network interconnect and
that the computing power is much higher than the network throughput are completely conformed by the

Torsten Höfler Page 44/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

InfiniBandTM architecture33. Unfortunately no presently known addition to the LogP model seems to be
helpful for modeling InfiniBandTM very accurate because non of the mentioned architectural details are
incorporated, so the original LogP model has to be modified to fit our special needs.

The LogP model was designed for general purpose environments, therefore it avoids architectural details.
Thus, it is mostly suitable for a high level abstractions and algorithmic design, for example above the
MPI [For95] layer. This work has already been done [EM04]. But the MPI layer may hide architectural
details and when optimizing collective operations for specialized networks, each detail in this network
architecture which can be used to speed up the operation has to be mentioned in the model. Thus, the
model described here is more detailed than the original. It is not meant as a general purpose programming
model competing with the the LogP, however it can be utilized to design highly specialized algorithms to
exploit the InfiniBandTM architecture for optimal performance. The following architectural details which
all have been described in section 1.3 are considered to design an accurate model.

2.3.1 Message Passing Options

For modeling all architectural details, especially the different possibilities for sending and receiving data
(described in section 1.3.4), the model has to represent each of the following communication options
separately. All options in brackets are currently not supported by available HCAs.

• (Reliable Datagram)

• Reliable Connection

• (Atomic Operation)

• RDMA Read

• RDMA Write

• Unreliable Datagram (also with Multicast)

• Unreliable Connection

• (RAW Ethernet)

• (RAW IPv6)

List 2.7: Modeled Communication Techniques

2.3.2 The HCA Processor

The HCA34 is used to process previously posted work requests and participates actively in the commu-
nication relieving the host processor (see section 1.3.1), which strictly lowers the o parameters. This
implies an additional level of parallelism and introduces new possibilities for overlapping computation
and communication. This is modeled as part of the latency (L) parameter in the standard LogP model,
which can be very accurate in most circumstances. But if the HCA is slower than the host CPU (the
CPU is able to post more work requests than the HCA can process), contention will occur at the HCA35

and the latency will vary from packet to packet (according to the frequency of previously occured posts).

2.3.3 Hardware Parallelism

The InfiniBandTM standard (see section 1.3.2) proposes implicit hardware parallelism or pipelining to
the vendors, therefore the easy idea of using a gap as time to wait between consecutive messages cannot
be very accurate in this architecture. The HCA can send two messages nearly in parallel until a single
message fills the whole bandwidth. Thus the linear model of LogP is not accurate enough. It is assumed

33at least with 4x links
34InfiniBandTM Host Channel Adapter
35the Queue Pairs in InfiniBandTM will fill up

Torsten Höfler Page 45/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

that the gap is now part of the latency which now depends on the number of previously issued send
operations (denoted as L(p)). To reflect this behavior correctly, the model has to pay attention to the
following send-receive scenarios:

• 1:1 communications

• 1:n communication

• n:1 communication

List 2.8: Send/Receive Scenarios

The latter two can be implemented either by a consecutive post of single work requests or by a single post
of a list of work requests. The performance implications have to be modeled as well. The approximation
function should behave like a normal pipeline startup function with t = a + b

x
. The parameters a and b

have to be measured for each vendor specific InfiniBandTM solution.

The new model introduces the new parameter h expressing the time which the HCA spends to process
a message (it can be subdivided into hs and hr for sender and receiver). The h parameters cannot be
measured directly because all actions are performed in hardware without notifying the host CPU. Thus,
the model hides the h and g parameter inside the L(p) parameter which varies depending on the number
of hosts addressed (p). This limits the model to be used only if one node does never send more than one
packet to another node because the L(p) does only depend on the number of addressed hosts and not on
the number of sent or received messages. This is given by the barrier problem, thus this model has to be
seen as barrier-specific. Further enhancements of the model to allow general use are part of future work.

The traditional LogP would be a linear function like: L(p) = hs(p) + L + (p − 1) · g + hr(p). Due
to parallelism and pipeline effects, this function is assumed to be non-linear. The L(p) parameter is
measurable and can be used to find the best algorithm for barrier implementations with InfiniBandTM

. The new model, named LoP, is depicted in figure 2.27. It has to be mentioned that L(p) and os/or

overlay each other because they are processed on different CPUs. Thus the HCA starts immediately to
process messages after the CPU posted the first one. It is assumed that o << L(p) ∀p ∈ N. The only
exception is the VAPI call to post a list of requests, where the HCA has to wait until all requests have
been posted, because all are posted at once.

CPU

Network

L

level

time

HCA

o s orh s h r

L(p)

g g

Figure 2.27: A new Model of InfiniBandTM

2.3.4 Measuring the Parameters

All parameters mentioned in the previous section are hardware specific and have to be measured for each
machine. The only possibility to measure the parameters is to evaluate the running time of different
operations performed by the HCA. The following statements are based on a typical interaction with the
HCA, shown in section 1.3.5.

Torsten Höfler Page 46/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

The parameters can be measured as follows:

• os(p) - time to complete the call VAPI_post_sr() or EVAPI_post_sr_list()

• or(p) - time to complete the call VAPI_post_rr() or EVAPI_post_rr_list()

• L(p) = RTT (p)
2 − (os(p)+os(1)) (sending to p processors and receiving from p processors - the HCA

starts processing after the first request arrived - the exception for posting a list of send requests is
found below, or(p) does not matter because Receive Requests can be posted in advance)

• Llist(p) = RTT (p)
2 − (p · os(p) + os(1)) (sending to p processors and receiving from p processors for

posting a list of send requests)

List 2.9: LoP Parameter Measuring

A possible benchmark is shown in figure 2.28 for the reliable connection type (see also 1.3.4.1), where

os(p) =
t2 − t1

p

or(p) =
t1 − t0

p

Lmea(p) =
t3 − t2

2 · p

RTT (p) =
t4 − t1

p

or(p), os(p), L(p) and RTT (p) values should be affected by sending multiple consecutive small messages
(see section 2.3.3) and have to be measured for n:1 and 1:n communication. RTT (p) is used to measure
L(p) because Lmea(p) does not include eventual memory contention effects on the receiver side.

Sender Receiver

take_time(t1);

p * VAPI_post_sr();

H
C
A

H
C
A

p * VAPI_poll_cq();

take_time(t2);

take_time(t3);

VAPI_poll_cq();

VAPI_post_sr();

VAPI_poll_cq();

p * VAPI_poll_cq();

p * VAPI_post_rr();

take_time(t0); VAPI_post_rr();

take_time(t4);

IBA

time

Figure 2.28: A Possible LoP Benchmark

2.3.5 A Benchmark of the LoP Model

The only way to verify the model and to measure the parameters defined in the LoP model is to benchmark
the actual hardware. The used benchmark, written in C36 with MPI function calls is presented in the
following section. The benchmark implements the scheme described in section 2.3.4. It uses two different
scenarios to measure all necessary parameters. Scenario 1 is used to measure all overheads for sending a

361290 SLOC, estimates to 3.1 person-months in the basic COCOMO model

Torsten Höfler Page 47/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

single message, while scenario 2 measures ping-pong times for 1:n and n:1 communications. The source
code is structured as follows:

• mpi_iba_bench.c - implements all administrative tasks (establishing connections, warming up the
HCA, printing the results)

• mpi_iba_bench.h - is used to parametrize the whole benchmark before compiling (all parameters
are compiled in for performance reasons)

• hr_timer.c and hr_timer.h - implements the high resolution timer functionality

• create_qp.c - functions to create new QPs

• scenario_1.sub.c - Scenario 1 (single message overhead)

• scenario_2.sub.c - Scenario 2 (ping-pong test)

• query.c - queries the HCA for most features (not part of the benchmark)

• send.c - simple send example for IBA (implements all functionality described in 1.3.5)

List 2.10: Structure of the LoP benchmark

The benchmark is described as pseudocode in the following listings. Listing 2.10 shows the preparation
phase, where most parts can be found in mpi_iba_bench.c and query.c. Listing 2.11 describes scenario
1 (scenario_1.sub.c) which is chosen for measuring os and or, while scenario 2 (scenario_2.sub.c) is
shown in listing 2.12.

Several implicit assumptions are taken to ensure the correctness of the pseudocode in all cases:

• vapi_poll_cq_wait(cq = recv_cq) returns immediately when RDMA is used

• vapi_post_rr() does not post a receive request if RDMA is used

• all measured times are summed up and divided by P, and REPETITIONS → all measured times
are per single message sent to and received from P hosts (RTT for 1:P and P:1 communication)

• the number of hosts participating in the run are correctly returned by the MPI library

List 2.11: Assumptions to the benchmark pseudocode

The behavior of the benchmark is modified by changing the defines in mpi_iba_bench.h. The following
defines can be changed in order to manipulate the benchmark:

• MODE - describes the operation used for transporting the messages

– MODE_SEND - normal Send/Receive Operation

– MODE_RDMAW - RDMA Write Operation

• MEASURE - selects the times to measure

– MEA_POST_SR_CPU_OVERHEAD - CPU time consumed for posting a single SR (os) (scenario 1)

– MEA_POST_RR_CPU_OVERHEAD - CPU time consumed for posting a single RR (or) (scenario 1)

– MEA_RTT_TIME - RTT (Round Trip Time) for a single message in Ping-Pong (scenario 2)

• SEND - options for posting a SR (send a message)

– SEND_NORMAL - post a normal SR (VAPI_post_sr())

– SEND_LIST - post a list of SRs (EVAPI_post_sr_list() - only in scenario 1)

– SEND_INLINE - post an inline send request (EVAPI_post_inline_sr())

• RECV - options for posting a RR

– RECV_NORMAL - post a normal RR (VAPI_post_rr())

– RECV_LIST - post a list of RRs (VAPI_post_rr_list())

• REPETITIONS - overall number of tests (to ensure accuracy)

Torsten Höfler Page 48/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

in i t ia l i ze mpi ()
in i t i a l i ze t imers ()

set p = number of participating processors
5 set rank = my local id

set addr send = allocate memory(MEMSIZE∗p−1)
set addr recv = allocate memory(MEMSIZE∗p−1)

10 vapi create pd ()
set recv cq = vapi create cq ()
set send cq = vapi create cq ()

// create QPs to a l l peers
15 i f rank == 0 then

for i in 1. .p−1 do

set qp[i] = create qp(src = 0, dst = i)
forend

else

20 set qp[i] = create qp(src = rank , dst = 0)
ifend

vapi register mem(addr recv)
vapi register mem(addr send)

25

// post 1000 RRs for warmup
for i in 0..1000 do

i f rank == 0 then

for j in 0. .p−2 do

30 vapi post rr (addr = addr recv , peer = j+1)
forend

else

vapi post rr (addr = addr recv , peer = 0)
ifend

35 forend

MPI Barrier ()

// send 1000 packets to peers
40 for i in 0..1000 do

i f rank == 0 then

for j in 0. .p−2 do

vapi post sr (addr = addr recv , peer = j+1)
vapi poll cq wait (cq = send cq)

45 vapi poll cq wait (cq = recv cq)
forend

else

vapi poll cq wait (cq = recv cq)
vapi post sr (addr = addr recv , peer = 0)

50 vapi poll cq wait (cq = send cq)
ifend

forend

Listing 2.10: Pseudocode of the LoP benchmark - preparation

Torsten Höfler Page 49/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

for k in 0. .REPETITIONS do

wait us(time = 1000)
for i in 1. .MAXPOST+1 do

set mem(val = 0, addr = addr send)
5 set mem(val = 0, addr = addr recv)

// rank 1 receives
i f rank == 1 then

for j in 0. . i do

10 take time(t0)
vapi post rr (addr = addr recv , peer = 0)
take time(t1)

forend

else

15 take time(t1)
ifend

MPI Barrier ()

20 // rank 0 sends
i f rank == 0 then

for j in 0. . i do

vapi post sr (addr = addr send , peer = 1)
take time(t2)

25 vapi poll cq wait (cq = send cq)
take time(t3)

forend

else

for j in 0. . i do

30 vapi poll cq wait (cq = recv cq)
forend

ifend

forend

forend

Listing 2.11: Pseudocode of the LoP benchmark - scenario 1

Torsten Höfler Page 50/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

set state = 0
for k in 0. .REPETITIONS

wait us(time = 1000)
for i in 1. .p do

5 i f rank == 0 then

for j in 0. . i do

vapi post rr (addr = addr recv [i] , peer = j+1)
forend

ifend

10 i f rank > 0 and rank <= i then

vapi post rr (addr = addr recv [0] , peer = 0)
ifend

MPI Barrier ()
15 set state = state + 1

take time(t1)
set mem(state , addr send , MEMSIZE)

i f rank == 0 then

20 for j in 0. . i do

vapi post sr (addr = addr send , peer = j+1)
forend

for j in 0. . i do

vapi poll cq wait (cq = send cq)
25 forend

ifend

i f rank > 0 and rank <= i then

vapi poll cq wait (cq = recv cq)
30 wait until addr recv [0] = state

vapi post sr (addr = addr send , peer = 0)
vapi poll cq wait (cq = send cq)

ifend

35 i f rank == 0 then

for j in 0. . i do

vapi poll cq wait (cq = recv cq)
wait until addr recv [i] = state

forend

40 ifend

take time(t4)
forend

forend

Listing 2.12: Pseudocode of the LoP benchmark - scenario 2

Torsten Höfler Page 51/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

2.3.6 Benchmark Results

All benchmarks are extremely implementation specific. The measured values highly depend on the
given architecture and circumstances. All following benchmark results have been gaged on a 64 node
InfiniBandTM cluster, interconnected with a 64 port switch (the hardware has been described in section
4.2.1). The general architecture to assess the parameters L and o of the LoP model for offloading based
systems is modeled in the following section.

The benchmarks have been conducted for Send/Receive and RDMA Write without immediate operation.
RDMA Read and RDMA Write with immediate have not been considered because the architectural
design and several studies, such as [LWP04, LJW+04] show that these operations are generally slower
than RDMA Write without immediate. Atomic Operations are not available on the used HCAs.

2.3.6.1 Modelling the Architecture

A general model of the Round Trip Time (RTT) and overhead times for offloading based networks will be
described to generalize the results of this thesis (e.g. to Myrinet, Elan). This model will be parametrized
to fit to the test cluster mentioned in section 2.3.6.

2.3.6.1.1 A Model of the RTT
The RTT model consists of three sections: The warmup section for the NIC (e.g. pipelining or cache
effects), the maximum performance section (NIC CPU is fully saturated) and the network saturation
section. This model assumes that 1:n and n:1 communications are equal in terms of costs. All λ values
have to be seen as variables changing the shape of the curve and have to be fitted to give the best
approximation to the measured values. The first section is typically represented by a pipeline startup
function of the shape:

tpipeline =
λ1

λ2 + p

The second section is only defined by the maximum CPU → NIC → NIC → CPU throughput (packet
processing rate), and is thus defined as constant:

tprocessing = λ3

The third section reflects the network saturation which typically behaves like an exponential function:

tsaturation = λ4 · (1 − eλ5·(p−λ6))

λ4 and λ5 influence the signature of the function and λ6 introduces a p-offset.

Altogether the RTT can be described with the following abstract model, which is depicted in figure 2.29:

trtt(λ1...6) = tsaturation + tprocessing + tpipeline

=
λ1

λ2 + p
+ λ3 + λ4 · (1 − eλ5·(p−λ6))

2.3.6.1.2 A Model of the Overhead
The send and receive overheads are modeled as pipeline startup functions. This is due to several cache
effects and pipelining effects at the host CPU. The HCA should not be involved into this process, because
the data is written into memory mapped registers inside the HCA memory.

The function can be described as:

tov(λ1...3) = λ1 +
λ2

λ3 + p

and is depicted in figure 2.30.

Torsten Höfler Page 52/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

p

R
T

T

t processing

processingpipeline saturation

saturatedt

Figure 2.29: The RTT Model

t min

p

t

Figure 2.30: The Overhead Model

2.3.6.1.3 Parametrizing the Model
The least squares method is used to find an optimal parametrization for all λ1...6. This method calculates
the sum of the squared deviations of the measured values to the functional prediction for all available
data-points and tries to minimize it. The following steps are performed for all predicted λ1...6 (y(m)
represents the value of data-point m, M is the number of available data-points, 1 ≤ m ≤ M).

dm(λ1...6) = (y(m) − trtt)
2

=

(

y(m) −

(

λ1

λ2 + p
+ λ3 + λ4 · (1 − eλ5·(p−λ6))

))2

d(λ1...6) =
M
∑

m=1

dm(λ1...6)

d(λ1...6) represents the least squares deviation of the actual trtt(λ1...6) from the measured values y(m) ∀1 ≤
m ≤ M . It is easy to see that d has to be minimized in a 6-dimensional space. To perform this task,
the Nelder-Mead simplex search method, proposed in [LRWW98] was used to find a local minimum.

Torsten Höfler Page 53/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

The search represents a k-dimensional input vector (λ1...k) with k + 1 vectors which form a simplex.
For example, a two-dimensional space is described by a triangle, and a three dimensional space by a
tetrahedron (a special pyramid). Each step creates a new point in or near the current simplex, calculates
the values and compares the solution to the original y. This is repeated until a given tolerance or a
maximum loop-count is reached.

The approximation scheme for tov is omitted because it can be easily derived from the scheme shown
above.

Most fits are optically not extremely accurate, this is mainly due to the fact that the Nelder-Mead method
converges against a local minimum which is highly dependent on the starting values of λ1...6. All values
have been optimized by hand to fit the graph as accurate as possible, but a single calculation takes up to
three hours and this method is in fact very uncomfortable. Future steps should include finding a better
approximation by leveraging the hints given at Optimization Software37 and and calculating the λs with
a parallelized version of the given algorithms.

2.3.6.2 Send/Receive Results

The minimal RTT results of Send/Receive InfiniBandTM operations can be seen in figure 2.31. The

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 10 20 30 40 50 60 70

M
in

im
al

 R
T

T
 in

 M
ic

ro
se

co
nd

s

Processors (p)

Normal Send
trtt,min

send,n

Inline Send
t2rtt,min

send,i

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 R
T

T
 in

 M
ic

ro
se

co
nd

s

Processors (p)

Normal Send
trtt,avg

send,n

Inline Send
trtt,avg

send,i

Figure 2.31: Minimal and Average Send/Receive RTT Times

depicted function describes trtt as described in section 2.3.6.1.1. The measured (y(m)) and fitted
(parametrized trtt) functions are shown in figure 2.31 and mathematically described in the following:

t
send,n
rtt,min(p) = 9.1637 +

22.4558

−0.0140 + p
+ 0.0174 ·

(

1 − e−0.0625·(p−101.3065)
)

t
send,i
rtt,min(p) = 9.0502 +

23.3204

0.1081 + p
+ 0.0895 ·

(

1 − e−0.0636·(p−74.6471)
)

t
send,n
rtt,avg(p) = 35.7292 +

191.6019

−0.0232 + p
+ 63.578 ·

(

1 − e0.0034·(p+43.7788)
)

t
send,i
rtt,avg(p) = 8.4888 +

424.1248

2.4364 + p
− 0.4132 ·

(

1 − e−1.6407·(p−1.1077)
)

The difference between normal (marked with n) and inline (marked with i) send is modeled quite accurate.
It is constantly about 1µs for small processor counts and vanishes when the network begins to saturate
(p ≈ 30).

37Optimization Software [http://plato.la.asu.edu/topics/problems/nlolsq.html]

Torsten Höfler Page 54/86

http://plato.la.asu.edu/topics/problems/nlolsq.html

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

The measured send (os) and receive (or) overheads are shown in figure 2.32. The measured values fit to

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16 18 20

o s
 in

 m
ic

ro
se

co
nd

s

posts

Send Normal
tsrov

send,n

Send Inline
tsrov

send,i

Send List
tsrov

send,l

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16 18 20

o r
 in

 m
ic

ro
se

co
nd

s

posts

Receive List
trrov

send,l

Receive Normal
trrov

send,n

Figure 2.32: SR and RR Times

the model function as given by the equations:

tsend,n
sr,ov (p) = 0.5150 +

0.8443

−0.1160 + p

tsend,i
sr,ov (p) = 0.5483 +

0.8830

−0.1316 + p

tsend,l
sr,ov (p) = 0.1443 +

1.1528

−0.1657 + p

tsend,n
rr,ov (p) = 0.5042 +

0.0871

−0.9037 + p

tsend,l
rr,ov (p) = 0.1427 +

0.3284

−0.7437 + p

The fastest method to post more than two send requests is generally to post a list (marked with l) of send
requests. All other methods could be beneficial with special send operations (inline send). The overall
results are calculated in section 2.3.7.

2.3.6.3 RDMA Write Results

The minimal and average RTT results of RDMA Write InfiniBandTM operations can be seen in figure
2.33. The shown function depicts trtt as described in section 2.3.6.1.1 for RDMA Write operation. The

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

M
in

im
al

 R
T

T
 in

 M
ic

ro
se

co
nd

s

Processors (P)

RDMA Write
trtt,min

rdmaw,n

RDMA Write inline
trtt,min

rdmaw,i

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
T

T
 in

 M
ic

ro
se

co
nd

s

Processors (P)

RDMA Write
trtt,avg

rdmaw,n

RDMA Write inline
trtt,avg

rdmaw,i

Figure 2.33: Minimal and Average RDMA Write RTT Times

average functions show a big deviation, and are only plotted and fitted up to 50 processors. The trtt values

Torsten Höfler Page 55/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

raise quickly up to 700µs for bigger processor counts, which could lead to the conclusion that memory or
bus contention occurs. The plotted deviation may be caused by memory contention and blocking/arbiting
effects of single RDMA write operations and varies extremely between different measurements.

The inline send is again about 1µs faster than the normal send for small processor counts p and this
difference vanishes during the network saturation (p > 30). The normal send seems to be much better
and even more ”stable” in the average case than the inline send. The functions for the average case are
also quite accurate, even if the measured values oscillate a lot. This is guaranteed by the least squares
method, punishing bigger deviations more than smaller ones.

The fitted functions for all described data-sets are given in the following:

t
rdmaw,n
rtt,min (p) = 4.4642 +

16.7937

0.0058 + p
+ 4.4751 ·

(

1 − e−0.0642·(p−12.9209)
)

t
rdmaw,i
rtt,min (p) = 3.0074 +

14.9630

0.0446 + p
+ 6.1891 ·

(

1 − e−0.0531·(p−8.2665)
)

t
rdmaw,n
rtt,avg (p) = 13.1499 +

26.2100

0.0596 + p
+ 0.0317 ·

(

1 − e−0.0841·(p−75.1048)
)

t
rdmaw,i
rtt,avg (p) = 11.4724 +

14.0689

0.0117 + p
+ 4.3843 ·

(

1 − e−0.0186·(p−29.1184)
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16 18 20

ru
nt

im
e

in
 m

ic
ro

se
co

nd
s

(o
s)

posts

RDMA Write
tsrov

rdmaw,n

RDMA Write Inline
tsrov

rdmaw,i

RDMA Write List
tsrov

rdmaw,l

Figure 2.34: RDMA os overhead

Figure 2.34 shows the send overhead (os) for RDMA Write operations. Posting a list of send requests is
again the fastest method of sending multiple packets, but to send the data inline could lower the latency
in the best case. This means that the send overhead is the lowest for list send but the RTT is lowered
by the use of inline send.

trdmaw,n
srov (p) = 0.5557 +

0.2103

−0.7728 + p

trdmaw,i
srov (p) = 0.5417 +

0.5003

−0.4951 + p

trdmaw,l
srov (p) = 0.1803 +

0.5726

−0.5746 + p

Torsten Höfler Page 56/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

2.3.6.4 Comparison of Send/Receive and RDMA Write

Figure 2.35 shows a direct comparison of RDMA Write and Send/Receive communication. The exact
LoP parametrization is derived in the next section.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 10 20 30 40 50 60

m
in

im
al

 R
T

T
 in

 M
ic

ro
se

co
nd

s
(r

t)

Processors (P)

trtt,min
rdmaw,i

trtt,min
send,i

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60

av
er

ag
e

R
T

T
 in

 M
ic

ro
se

co
nd

s

Processors (P)

trtt,avg
rdmaw,n

trtt,avg
send,i

Figure 2.35: RDMA Write and Send/Receive comparison

2.3.7 Choosing the Optimal Solution to the Problem

The three possibilities for RDMA Write or Send/Receive semantics to pass a message to a remote system
with InfiniBandTM have been investigated. The RTT was measured for inline send and normal send.
List send was not measured because it should behave exactly like normal send regarding to L(p), only
the time to post a single message (os) is reduced (but the operation on the HCA starts after posting all
requests). The L(p) should be affected by sending a message inline or not, thus it has to be modeled
for these two different scenarios. However, the following equations are mainly given for completeness
and show up to be extremely system dependent. Thus, it is not recommended to reproduce every single
calculation, but the reader should be able to perform a similar analysis for another system. (all values
have been rounded for convenience):

L
send,n
min (p) =

t
send,n
rtt,min(p)

2
−

“

t
send,n
sr,ov (1)

”

−

“

t
send,n
sr,ov (p)

”

= 4.58 +
11.23

−0.01 + p
+ 0.01 ·

“

1 − e
−0.06·(p−101.31)

”

−

„

0.52 +
0.84

−0.12 + 1

«

−

„

0.52 +
0.84

−0.12 + p

«

= 2.59 +
−1.34 + 10.39p

0.13p + p2
+ 0.01 ·

“

1 − e
−0.06·(p−101.31)

”

L
send,i
min (p) =

t
send,i
rtt,min(p)

2
−

“

t
send,i
sr,ov (1)

”

−

“

t
send,i
sr,ov (p)

”

= 4.53 +
11.66

0.11 + p
+ 0.04 ·

“

1 − e
−0.06·(p−74.65)

”

−

„

0.55 +
0.88

−0.13 + 1

«

−

„

0.55 +
0.88

−0.13 + p

«

= 2.42 +
−1.61 + 10.78p

−0.01 − 0.02p + p2
+ 0.04 ·

“

1 − e
−0.06·(p−74.65)

”

L
send,n
avg (p) =

t
send,n
rtt,avg(p)

2
−

“

t
send,n
sr,ov (1)

”

−

“

t
send,n
sr,ov (p)

”

= 17.86 +
95.8

−0.02 + p
+ 31.79 ·

“

1 − e
0.003·(p+43.78)

”

−

„

0.52 +
0.84

−0.12 + 1

«

−

„

0.52 +
0.84

−0.12 + p

«

= 15.87 +
−11.51 + 94.96p

−0.14p + p2
+ 31.79 ·

“

1 − e
0.003·(p+43.78)

”

L
send,i
avg (p) =

t
send,i
rtt,avg(p)

2
−

“

t
send,i
sr,ov (1)

”

−

“

t
send,i
sr,ov (p)

”

= 4.24 +
212.06

2.44 + p
− 0.21 ·

“

1 − e
−1.641·(p−1.11)

”

−

„

0.55 +
0.88

−0.13 + 1

«

−

„

0.55 +
0.88

−0.13 + p

«

Torsten Höfler Page 57/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

= 2.13 +
−29.72 + 211.18p

−0.32 + 2.31p + p2
− 0.21 ·

“

1 − e
−1.641·(p−1.11)

”

L
rdmaw,n
min (p) =

t
rdmaw,n
rtt,min (p)

2
−

“

t
rdmaw,n
sr,ov (1)

”

−

“

t
rdmaw,n
sr,ov (p)

”

= 2.23 +
8.39

0.01 + p
+ 2.24 ·

“

1 − e
−0.064·(p−12.92)

”

−

„

0.56 +
0.21

−0.77 + 1

«

−

„

0.56 +
0.21

−0.77 + p

«

= 0.20 +
−6.46 + 8.18p

−0.01 − 0.76p + p2
+ 2.24 ·

“

1 − e
−0.064·(p−12.92)

”

L
rdmaw,i
min (p) =

t
rdmaw,i
rtt,min (p)

2
−

“

t
rdmaw,i
sr,ov (1)

”

−

“

t
rdmaw,i
sr,ov (p)

”

= 1.5 +
7.48

0.04 + p
+ 3.09 ·

“

1 − e
−0.053·(p−8.27)

”

−

„

0.54 +
0.50

−0.49 + 1

«

−

„

0.54 +
0.50

−0.49 + p

«

= −0.56 +
−3.69 + 6.98p

−0.02 − 0.45p + p2
+ 3.09 ·

“

1 − e
−0.053·(p−8.27)

”

L
rdmaw,n
avg (p) =

t
rdmaw,n
rtt,avg (p)

2
−

“

t
rdmaw,n
sr,ov (1)

”

−

“

t
rdmaw,n
sr,ov (p)

”

= 6.57 +
13.11

0.06 + p
+ 0.02 ·

“

1 − e
−0.08·(p−75.10)

”

−

„

0.56 +
0.21

−0.77 + 1

«

−

„

0.56 +
0.21

−0.77 + p

«

= 4.54 +
−10.1 + 12.9p

−0.05 − 0.71p + p2
+ 0.02 ·

“

1 − e
−0.08·(p−75.10)

”

L
rdmaw,i
avg (p) =

t
rdmaw,i
rtt,avg (p)

2
−

“

t
rdmaw,i
sr,ov (1)

”

−

“

t
rdmaw,i
sr,ov (p)

”

= 5.74 +
7.03

0.01 + p
+ 2.19 ·

“

1 − e
−0.02·(p−29.12)

”

−

„

0.54 +
0.50

−0.49 + 1

«

−

„

0.54 +
0.50

−0.49 + p

«

= 3.68 +
−3.45 + 6.53p

−0.01 − 0.48p + p2
+ 2.19 ·

“

1 − e
−0.02·(p−29.12)

”

All functions for the different possibilities to send or receive 1 byte packets using the send-receive and
RDMA semantics are shown in figure 2.36. The results show that RDMA write with immediate is the
best solution for small messages.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60

m
in

im
al

 L
(p

)
in

 M
ic

ro
se

co
nd

s

Processors (p)

Lmin
send,n(p)

Lmin
send,i(p)

Lmin
rdmaw,n(p)

Lmin
rdmaw,i(p)

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60

av
er

ag
e

L(
p)

 in
 M

ic
ro

se
co

nd
s

Processors (p)

Lavg
send,n(p)

Lavg
send,i(p)

Lavg
rdmaw,n(p)

Lavg
rdmaw,i(p)

Figure 2.36: Average and minimal L(p) for RDMA and Send

Thus, the time to send one message to n hosts for each possible post send request / send type combination
can be assessed with:

t1:n = o(n) + n · L(n)

. . . for posting a list of send requests:

tlist
1:n = n · o(n) + n · L(n)

Torsten Höfler Page 58/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

the time to send 1 messages from n hosts with:

tn:1 = o(1) + n · L(n)

and the time to send 1 messages from 1 host with:

t1:1 = o(1) + L(1)

It is assumed that L(n) À o(n) ∀n ∈ N.

2.3.7.1 Barrier Algorithms inside the LoP Model

As already done for the LogP model, in section 2.2.5 and 2.2.6, a representative of each barrier-algorithm
group will now be analyzed inside the LoP model. This process is more complicated because of the
influence of the time (the ”cooling down”). A new parameter for the number of performed barrier
operations (cnt) has to be introduced to reflect this. The following predictions assume a balanced state
of the algorithm (all nodes can send without waiting for the other nodes).

2.3.7.1.1 Central Counter
The running time of the central counter algorithm, shown in figure 2.37, can be predicted as:

P0

P1

P2

P3

P4

P5 Phase 1 Phase 2

o(1)

o(1)

o(1)

o(1)

o(1)

o(5) o(5) o(5) o(5) o(5)

L(5)

L(5)

L(5)

L(5)

L(5)

L(5)

L(5)

L(5)

L(5)

L(5)

L(5)

Figure 2.37: LoP for the Central Counter

rt = o(1 · cnt) + (p − 1) · L ((p − 1) · cnt) + o((p − 1) · cnt) + (p − 1) · L ((p − 1) · cnt)

2.3.7.1.2 Combining Tree
The running time of the combining tree algorithm for a given n can be predicted as:

rt = dlognpe · (o(1 · cnt · dlognpe) + (n − 1) · L ((n − 1)) · cnt · dlognpe)) + tbc

tbc = dlog2pe · o(cnt · dlog2pe) + dlog2pe · L(cnt · dlog2pe)

The describing figures have been omitted, compare the according LogP figures in 2.15 for rt and tbc (the
longest path - for tbc starting at P0).

2.3.7.1.3 Tournament Barrier
The running time prediction for the Tournament Barrier is given by the following equation:

rt = dlog2pe · (o(1 · cnt · dlog2pe) + L (1 · cnt · dlog2pe)) + tbc

Torsten Höfler Page 59/86

CHAPTER 2. SOFTWARE SOLUTION 2.3. PROPOSAL OF A MODEL FOR INFINIBANDTM

2.3.7.1.4 n-way Dissemination Barrier
The n-way Dissemination barrier should perform as follows:

rt = dlogn+1pe · (n · o(n · cnt · dlogn+1pe) + n · L(n · cnt · dlogn+1pe))

Note: the 1-way Dissemination barrier behaves exactly like the normal Dissemination Barrier.

2.3.7.1.5 Comparison inside the LoP Model
Figure 2.38 shows the predicted runtime curves for all algorithms using RDMA Write with inline send.
As mentioned in the previous section 2.3.7.1, the algorithm is assumed to be balanced and no node has

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60

M
in

im
al

 R
T

T
 in

 M
ic

ro
se

co
nd

s

Processors (p)cnt = 2

Central Counter
Combining Tree (n=5)

Tournament Barrier
1-way Dissemination
2-way Dissemination
3-way Dissemination
4-way Dissemination
6-way Dissemination

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60

M
in

im
al

 R
T

T
 in

 M
ic

ro
se

co
nd

s

Processors (p)cnt = 5000

Central Counter
Combining Tree (n=5)

Tournament Barrier
1-way Dissemination
2-way Dissemination
3-way Dissemination
4-way Dissemination
6-way Dissemination

Figure 2.38: Minimal LoP Predictions for RDMA-Write inline (left: cnt = 2, right: cnt = 5000)

to wait for the others to arrive. Additionally, the best case scenario is used to predict the performance.
Both assumptions are only taken to simplify the model and one should be aware that they influence
the accuracy of the model. Thus, the benchmark results are expected to be bigger than the predicted
results, especially for big node-counts. Additionally, the conclusion that the 1-way Dissemination Barrier
seems to be the best is only valid within this simplified model without memory contention. Therefore, the
benchmark in section 4.4.3 is conducted for different values of n. Figure 2.39 shows the estimated number

 10
 20

 30
 40

 50
 60 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0

 1

 2

 3

 4

 5

 6

Rounds

logn+1p

Processors (p)

n

Rounds

 10
 20

 30
 40

 50
 60 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0

 10

 20

 30

 40

 50

 60

Minimal Latency in Microseconds

cnt = 5000

n-way Dissemination

Processors (p)

n

Minimal Latency in Microseconds

Figure 2.39: Round-count and appropriate predicted run time of the n-way Dissemination Barrier

of rounds for the n-way Dissemination Barrier to synchronize all nodes in the left and the predicted overall
runtime with the parameters given by the LoP model for RDMA Write inline in the right. The number
of rounds, which is the main indicator for the overall runtime declines rapidly with ascending n, but the
predicted running time increases. This phenomena can be explained with the fact that more work has to
be done per round and the ”low-region” for sending a message (see figure 2.36) is left for 5000 consecutive
barriers. But due to the simplifications done in this model, especially to neglect the memory contention
and synchronization wait times, the benchmark result is quite unpredictable. All these theoretical models
assume the best-case latency and give a lower bound to the barrier problem. The memory contention

Torsten Höfler Page 60/86

CHAPTER 2. SOFTWARE SOLUTION 2.4. SUMMARY

and synchronization overhead can be assessed with the difference between the predicted and measured
values.

2.4 Summary

This chapter analyzes several models regarding to their suitability for small messages within the Infini-
Band network. Several well known barrier algorithms have been described and analyzed with regards to
the number of issued network operations and their total running time inside the LogP model. A new
model based on empirical benchmarks was proposed for small messages on the InfiniBandTM network to
increase the accuracy of the running time assessment. After that, a theoretically optimal solution was
derived from all modelings and it was shown that the defined operations of the InfiniBandTM architecture
can not be used to reach a constant time barrier. Thus, the next chapter introduces several possibilities
to achieve this task by leveraging hardware support.

Torsten Höfler Page 61/86

Chapter 3

Hardware Solution

Software solutions as described in chapter 2 can be implemented in a portable and scalable way by
sending 0 byte messages for synchronization. But at least the logarithmic complexity and a significant
startup overhead per message remain and result in a high barrier latency. To reduce the impact of
the logarithmic complexity and the overhead, the barrier operation can be totally offloaded or partially
supported by the interconnect hardware. The three main models for offloading barrier are to add support
in the existing data-network, deploy an extra synchronization network or to offload the operation to the
NIC hardware. Several supercomputing vendors like Cray and Thinking machines and universities like
the Purdue University added hardware support for global synchronization to their machines. Some of
them use a dedicated network [KS93, LAD+96] and some try to leverage the existing data network [BP91,
GGK+98, Pan, Sco96]. Additionally, several studies [ABP92, Sco96, OD89] present the benefits which can
be gained by using hardware synchronization. The following sections propose hardware support schemes
within the data network and an explicit synchronization network. NIC offloading is not contemplated
because the currently available InfiniBandTM HCAs do not offer a user programmable NIC-CPU. Several
practical studies have shown that the barrier performance can be improved [YBGP04] but only the os

and or parameters are lowered and the influence of the machines PCI bus is eliminated, the Latency L

and the gap g remain constant with their logarithmic complexity. Thus this technique can only offer a
constant degree of improvement.

3.1 Barrier Support in the Data Network

A former study [SSP97] proposed a reliable synchronization scheme for switches. A new hardware scheme
to improve interconnect switches, mainly focused on easy silicon design, high scalability and low latency
will be proposed based on this paper. The following proposal is based on a single switch system, if
multiple switches are connected to form a single network, the barrier operation is first performed within
a single switch and propagated hierarchically between multiple switches. Therefore the switches could act
as clients performing the most suitable barrier synchronization scheme for their topology (see chapter 2)
in software. A hardware scheme is not proposed here because the additional costs would not pay off. A
Mag-Pie [KHB+99] like software synchronization scheme seems more beneficial and can be implemented
easier to avoid deadlocks.

3.1.1 Single Switch

It is assumed that P nodes are interconnected by a switch with N ports and the switch is built up as
a crossbar (cmp. section 2.1.4.5). A new packet-type is defined for the low level switch protocol (e.g. a
special LID in InfiniBandTM or a special MAC address in Ethernet) for all barrier related packets. These
packets are generally very small and never routed between switches, they are only used for switch to
host and host to switch communication. The crossbar logic inside the switch identifies these packets and
passes them to the barrier logic incorporated in each switch (see figure 3.1).

CHAPTER 3. HARDWARE SOLUTION 3.1. BARRIER SUPPORT IN THE DATA NETWORK

Port 0

Port 1

Port 2

P
o
rt 0

P
o
rt 1

P
o
rt 2

...

...

Port N−1

P
o
rt N

−
1

Barrier

 Logic

Figure 3.1: Barrier Logic inside the Crossbar

Each barrier unit can serve up to I barriers concurrently. To relate each barrier packet to a specific
barrier in the logic, an ID i (i ∈ N; 0 ≤ i < I) is assigned.

The barrier logic implements a bit field of size N + 1× 2 · I, where each line i and i + I represents status
information for barrier number i. Each bit n (n ∈ N; 0 ≤ n < N) in line i represents the current barrier
status of the host connected to port n (n = 1 means barrier reached and n = 0 not). The bits n in line
i + I indicate whether the host connected to port n is participating in barrier i (n = 1 means no, n = 0
means yes). Each bit in the array can be addressed as (line,column), for example the bit 4 (port 4) in
line 6 (barrier 6) can be written as (6, 4). Bit N in line i is defined as follows:

(i,N) = ((i, 0) ∨ (i + I, 0)) ∧ ((i, 1) ∨ (i + I, 1)) ∧ . . . ∧ ((i,N − 1) ∨ (i + I,N − 1))

Bit N in line i + I is used to indicate the status of barrier i (0 = unused, 1 = used). The whole bit-array
and the functionality is shown in figure 3.2.

0 2 3 4 5 6 71

i=0

i=1

i=3

i=2

i=I+0

i=I+1

i=I+2

i=I+3

Barrier occupied

Barrier ready

8

Port

Figure 3.2: Bit Array in the Barrier Logic (I = 4, N = 8)

The protocol to initialize a barrier operation is performed after creating a new communicator (e.g.
MPI_INIT, MPI_COMM_DUP).

1. rank 0 sends a getId() packet to the switch

2. the switch searches for bit (i + I,N) ≡ 0 (0 ≤ i < I), sets the selected (i + I,N) = 1, initializes the
barrier array and returns i to the requestor (as a getIdAck(ID) packet)

• I is returned to indicate that all available barriers are used

• the test for (i + I,N) ≡ 0 has to be performed as an uninterruptable operation (atomic) to
prevent race conditions

Torsten Höfler Page 63/86

CHAPTER 3. HARDWARE SOLUTION 3.1. BARRIER SUPPORT IN THE DATA NETWORK

• initialization is done by setting all (i, n) to 0 and all (i + I, n) to 1 (0 ≤ n < N)

3. rank 0 broadcasts the received ID to all ranks

4. all ranks p (0 ≤ p < P) send a wantParticipate(ID) packet to the switch

5. the barrier logic sets bit (ID + I, p) to 0 and responses wantParticipateAck(ID) to the sender

6. each rank waits in a software barrier until all ranks received their wantParticipateAck(ID)

The initialization phase ends after all nodes have registered for participating in the barrier. The normal
barrier operation protocol consists mainly of single send/receive operations which are processed in parallel
at the switch.

1. rank p sends a barrierReached(ID) packet to the switch

2. if the switch receives a barrierReached(ID) packet at port n, it sets bit (ID, n) to 1 and responds
with barrierReachedACK(ID)

3. if (ID,N) ≡ 1, then all nodes reached the barrier and the switch sends a barrierReady(ID) packet
to all ports n where (ID + I, n) ≡ 0 after setting all bits (ID, j) (0 ≤ j < N) to 0

4. all ranks receive the barrierReady(ID) packet, answer with barrierReadyACK(ID) and leave the
barrier

After finishing the parallel job, the barrier ID has to be deregistered at the switch.

1. rank 0 sends a freeBarrier(ID) packet

2. the switch sets (ID + I,N) to 0 and answers freeBarrierACK(ID)

An example for operation is shown in figure 3.3.

port 0: rank 1

port 1: −

port 2: rank 0

port 3: rank 2

0 2 31

i=0

i=1

i=I+0

i=I+1

4

0 0 0 0 0

00000

0 0 0 0 0

00000

port 0: rank 1

port 1: −

port 2: rank 0

port 3: rank 2

0 2 31

i=0

i=1

i=I+0

i=I+1

4

0 0 0 0 0

00000

0 1 0 0

00000

After Register:

1

port 0: rank 1

port 1: −

port 2: rank 0

port 3: rank 2

Initial:

0 2 31

i=0

i=1

i=I+0

i=I+1

4

1 0 1 1 1

00000

0 1 0 0

00000

Barrier 0 Ready:

1

Figure 3.3: Bit Array Operation (I = 2, N = 4)

Torsten Höfler Page 64/86

CHAPTER 3. HARDWARE SOLUTION 3.1. BARRIER SUPPORT IN THE DATA NETWORK

3.1.1.1 Packet Format

The protocol uses 12 different packet types and can be encoded in 4 bits. The barrier id length depends
on the biggest available barrier number, we assume 128 (7 bit) for this example. An example packet
is shown in figure 3.4 and needs only 11 bit of payload. A possible protocol encoding is given in the

3 2 1 0 0256 4 3 1

IDCode

Figure 3.4: Barrier Packet Format

following table:

Code Packet Type
0001 getId

0010 getIdACK

0011 wantParticipate

0100 wantParticipateACK

0111 barrierReached

1000 barrierReachedACK

1001 barrierReady

1010 barrierReadyACK

1011 freeBarrier

1100 freeBarrierACK

Table 3.1: Barrier Protocol Encoding

3.1.1.2 Reliability

Reliability is an important aspect, because network packets can be corrupted or get lost during trans-
mission and cause deadlocks. Each packet has a corresponding ACK packet, which is used to notify the
sender about successful reception. The sender repeats the request if no ACK packet is received within a
specific time interval. The ACK packets are also assiciated with a specific barrier number to distinguish
between different barriers on both sides.

3.1.1.3 Runtime and Scalability

The running time can be predicted with the following parameters:

• os overhead at the sending host to send a barrier message

• or overhead at the receiving host to receive and process a barrier message

• op(P) maximal time to process a barrier in the hardware

• L network latency

• P number of hosts

A single barrier can be performed in:

tb = os + 2 · L + op(P) + or

Thus, the only parameter which depends on the number of hosts is the processing time op(P). The
asymptotic behavior of op is logarithmic (O(log(P))) and depends on the specific architecture.

Torsten Höfler Page 65/86

CHAPTER 3. HARDWARE SOLUTION3.2. BARRIER SUPPORT IN A DEDICATED NETWORK

The system is extremely scalable, even though the required number of Flip-Flops grows linear with the
number of nodes. Only two additional Flip-Flops are needed per node and barrier. A 512 port switch
offering 128 concurrent barriers would only need 128 000 Flip-Flops and the logic to process the barrier.

3.2 Barrier Support in a dedicated Network

An extra synchronization network, based on commodity components which leverages the parallel port has
been implemented by the Purdue University and is described in [CDS94], [DHM96] and [DCMM95]. The
achieved barrier latency for 4 nodes is only 2.5µs. The architecture which is described in the following
section is only tidly related to the main focus of this thesis. Thus, only a short description for a proof
of concept design is given, which tries to rate the applicability to our problem domain and the upcoming
problems introduced by such a solution.

3.2.1 Proof of Concept Design

This proof of concept design is used to build a barrier network between 4 nodes. The parallel port is used
to exchange all information. The parallel port offers 1 byte of outgoing data and some additional flags,
altogether 5 bits can be received and 12 bits can be sent in parallel. The parallel port is represented by
three bytes, which can be accessed directly via the inb() and outb() 80x86 processor instructions relative
to a BASE port (usually 0x378 for the first parallel port). The pin assignment is shown in figure 3.5. A C-

127 6 5 4 3 0

127 6 5 4 3 0

127 6 5 4 3 0
Control Port (BASE + 2)

Status Port (BASE + 1) IRQ enable

17 16 14 1

13

14

11 10 12 13 15

Data Port (BASE + 0)

6 5 3 24789

1

outgoing

incoming

25

Figure 3.5: Parallel Port Pin Assignment (back side)

Source code to read from the port and write to it is given in listing 3.1. However, pin 14 (CONTROL[1])
was used as incoming line and pin 2 (DATA[0]) as outgoing to implement a single barrier for 4 nodes. A
two-state machine, shown in figure 3.6 is used to implement the barrier mechanism on an FPGA board
(ij is DATA[0] from node j, o is CONTROL[1] to node j (∀ 0 ≤ j ≤ 4)).

Torsten Höfler Page 66/86

CHAPTER 3. HARDWARE SOLUTION3.2. BARRIER SUPPORT IN A DEDICATED NETWORK

#include <stdio .h>
#include <unistd .h>
#include <asm/io .h>

5 #define BASEPORT 0x378

int main()
{

/∗ Get access to the ports − only as root ! ∗/
10 i f (ioperm(BASEPORT, 3, 1)) {perror (”ioperm”); exit (1);}

/∗ Set the data signals (D0−7) of the port to a l l low (0) ∗/
outb(0 , BASEPORT);

15 /∗ Read from the status port (BASE+1) and print the result ∗/
pr intf (”status : %d\n” , inb(BASEPORT + 1));

}

Listing 3.1: Accessing the Port in C

i1 and i2 and i3 and i4 = ’1’

i1 or i2 or i3 or i4 = ’0’

o = ’1’

o = ’0’

Figure 3.6: Two-state machine to implement the Barrier

3.2.2 Runtime and Scalability

This approach can be modeled with the following parameters:

• ow CPU overhead to write to the parallel port

• or CPU overhead to read from the parallel port

• op(P) processing overhead of a state change

• P number of participating processors

If a barrier completion is indicated ba a state transition and the application saves the state, the minimal
running time of the barrier can be described by:

tb = ow + op(P) + or

One write is performed to indicate that the barrier is reached and one read (minimum) is performed to
test if all nodes reached their barrier. The expected state (0 or 1) has to be saved by the application and
toggled for every barrier entry.

Torsten Höfler Page 67/86

CHAPTER 3. HARDWARE SOLUTION 3.3. SUMMARY

3.2.2.1 Parameter Benchmark

A benchmark of the single parameters resulted in the following values on our testcluster (1 ≤ P ≤ 4):

ow = 1.2µs

or = 1.2µs

op(P) = P · 10ns

Thus, the running time can be predicted for our cluster with 4 nodes as:

tb = 2 · 1.2µs + 4 · 0.01µs

= 2.44µs

This mechanism is extremely scalable because the overall running time is nearly not changed even if the
op parameter increases linearly.

3.2.3 Further Ideas

Some further ideas to enhance the barrier functionality are mentioned in the following. They are not
analyzed in depth because the main focus of this paper is targeted at optimizing the barrier operation
for InfiniBandTM .

A packet-like interaction with the barrier hardware could be used to add more flexibility. 12 bits can be
send to and 5 bits can be received from the hardware through the parallel port. A possible mechanism
to leverage this could be to write an 11 bit value and a status bit to the barrier hardware and to read
one bit, to check if all participating hosts reached the given barrier number or not. 11 bit can be used
to address 211 different barriers, but several problems arise (e.g. if not all hosts are participating in a
specific barrier). To tackle all these problems, the mechanism could be enhanced with the ideas proposed
in section 3.1 to support a big number of very flexible barrier operations in parallel.

Another idea may be the implementation of the whole mechanism into the operating system to prevent
access problems (the current approach is only suitable for privileged processes) by creating several new
devices (e.g. /dev/barrier0 . . . /dev/barrier<n>) which block a reading process until all nodes reached
the barrier. A non blocking approach, to support non-blocking barrier operation could also be provided
(e.g. /dev/nbarrier0 . . . /dev/nbarrier<n>) where a read returns the actual status of the barrier.

3.3 Summary

This chapter described the possibilities to achieve a constant time barrier either with barrier support
implemented inside the InfiniBandTM network or within a separate barrier network. The approach of a
separate network is cost optimized and uses only commodity components and a cheap control hardware.
This barrier was implemented as a proof of concept and has shown constant latency times about 2.5µs.
The next chapter evaluates all implementations based on this thesis and draws a conclusion for future
work.

Torsten Höfler Page 68/86

Chapter 4

Practical Results and Conclusion

4.1 Implementation

The different barrier techniques have been implemented within the Open MPI framework as described in
section 1.4. The three different collective modules are tested in the following. The first implementation
is the most portable one and does not require any special network, it is layered completely on the top of
normal MPI point to point messages and is called swbarr which emphasizes the fact that no hardware
support is needed. The second implementation is InfiniBandTM specific and leverages the perceptions
from the LoP model to implement a low-latency InfiniBandTM specific barrier and is called ibbarr. The
last module, called hwbarr requires our proprietary parallel port hardware to run and therewith is the
least portable implementation.

4.1.1 Software Barrier

The Software Barrier (Swbarr) component offers implementations of different barrier algorithms based
on point-to-point operations. It offers an extensible framework which is open to further additions (e.g.
new algorithms). The configuration is done via mca-parameters in the ~/.openmpi/mca-params.conf

file. The following keywords are recognized:

• coll_swbarr_priority - priority of the swbarr

• coll_swbarr_selection - selected algorithm

• coll_swbarr_dissn - n-parameter (n-way Dissemination)

• coll_swbarr_combn - n-parameter (Combining Tree)

The following algorithms are available for selection (the coll_swbarr_selection number is given in
brackets):

• (1) Central Counter (original Open MPI implementation)

• (2) Combining Tree Barrier

• (3) Tournament Barrier

• (4) Dissemination Barrier

• (5) Binomial Tree Barrier (original Open MPI implementation)

• (6) n-way Dissemination Barrier

If coll_swbarr_selection is set to 0 all available barrier algorithms are benchmarked during the init-
phase and the fastest is chosen for later usage. This is the recommended type of operation because it adds
only a small overhead during the creation of new communicators, but can enhance the barrier-performance
significantly.

CHAPTER 4. PRACTICAL RESULTS AND CONCLUSION 4.2. BENCHMARK ENVIRONMENT

4.1.2 Hardware Barrier

The Hardware Barrier (Hwbarr) is implemented as described in section 3.2 and utilizes external synchro-
nization hardware based on an Altera UP1 FPGA Board (see figure 4.1). The parallel-port of each node
is connected to the external interface of the FPGA with a self-made connector cable (connecting ERR
as input and DATA0 as output - compare figure 3.5). One limitation is that the current layout supports
only MPI_COMM_WORLD and all nodes have to be connected to the Hwbarr. The MPI-Program has to run

Figure 4.1: Altera Development Board

with superuser-privileges because of the direct parallel-port access. This implementation is only a proof
of concept design and has to be enhanced for production usage.

4.1.3 InfiniBandTM Barrier

The InfiniBandTM Barrier (Ibbarr) Open MPI module offers an InfiniBandTM barrier and is implemented
with the n-way Dissemination Algorithm (variable n). The current implementation uses RDMA Write
with inline send to avoid race conditions in the send buffer during the send. The whole calculation of
send peer and receive peer (compare listing 2.8) is done before the actual run (cached) to speed up the
critical path.

Normal work requests are unsignaled, but the current implementation of the Mellanox HCA enforces the
use of a signaled send request every n sends to complete all previous unsignaled ones. The maximum
count of unsignaled send requests (n) can be specified with the constant MAX_UNSIGNALED_WR_REQS in
the file coll_ibbarr.h.

4.2 Benchmark Environment

Three different clusters have been utilized to test the performance of the implementations due to the
different hardware requirements.

4.2.1 Mozart

The Mozart Cluster, located at the University of Stuttgart, is populated with 64 nodes and the biggest
InfiniBandTM cluster which was used to verify the results of this paper. A single node offers the following
configuration:

• Processor: 2x3GHz Xeon

• Memory: 4GB

Torsten Höfler Page 70/86

CHAPTER 4. PRACTICAL RESULTS AND CONCLUSION 4.3. BENCHMARK APPLICATIONS

• OS: Red Hat Linux release 9 (Shrike)

• Kernel: 2.4.27 SMP

• HCA: Mellanox ”Cougar” (MTPB 23108)

The nodes are interconnected with a 64 port Mellanox InfiniBandTM MTS 9600 switch and Gigabit
Ethernet.

4.2.2 CLiC

The Chemnitzer Linux Cluster was used to verify all non InfiniBandTM related results (Swbarr). It
consists of 528 nodes interconnected by 2 Fast Ethernet Interfaces (a single management and a single
communication connection). The single nodes are configured as follows:

• Processor: 1x0.8Ghz Pentium III (Coppermine)

• Memory: 0.5GB

• OS: Red Hat Linux release 7.3 (Valhalla)

• Kernel: 2.4.18

The service network is connected by a hierarchy of 48 Port Cisco 3548 XL Switches and the communication
network utilizes a single Extreme Black Diamond 6x96 Port Switch.

4.2.3 Oscar

The Oscar Cluster is our local test system, it consists of 4 InfiniBandTM capable nodes interconnected
by a Mellanox MTS 2400 24 port switch. The single node configuration is given in the following:

• Processor: 2x2.4GHz Xeon

• Memory: 2GB

• OS: Fedora Core release 1 (Yarrow)

• Kernel: 2.4.22

• HCA: Mellanox ”Cougar” (MTPB 23108)

Additional networks, like a Fast Ethernet service network and Gigabit Ethernet communication network
are also available but not used for the following benchmarks.

4.3 Benchmark Applications

4.3.1 Expected Results

As shown in a long-term study at the HLRS1 [Rab00], the barrier operation stands at the fifth position of
the most time-consuming collective operations. It is responsible for about 6% of the CPU time consumed
by the MPI library and respective 0.81% of the whole application running time of all profiled applications
(in the average case). This is partially caused by the barrier latency itself to synchronize the processors
(ideally if all processors reach the barrier synchronously) and the synchronization overhead which occurs
on one processor while it has to wait for the others to reach the barrier (unbalanced application). The
barrier latency is compared to the whole barrier waiting time very small, thus it can be assumed that
the lion’s share of the CPU time for barrier is caused by the the synchronization overhead in unbalanced
applications. Thus, speeding up the barrier operation should only have a very small influence on the
overall application running time, but can be very useful for benchmarks and other operations which
require much synchronization (e.g. gang scheduling).

1HLRS [http://www.hlrs.de]

Torsten Höfler Page 71/86

http://www.hlrs.de

CHAPTER 4. PRACTICAL RESULTS AND CONCLUSION 4.3. BENCHMARK APPLICATIONS

set reps = number of barr iers (cnt − parameter)

MPI Barrier(MPICOMMWORLD)

5 take time(t0)
for i in 1. . reps do

MPI Barrier(MPICOMMWORLD)
forend

take time(t1)
10 set res = (t1−t0)/reps

MPI Reduce(res , max, 1 , MPI DOUBLE, MPI MAX, 0, MPICOMMWORLD)
i f rank == 0 then

print (max)
15 ifend

MPI Finalize ()

Listing 4.1: Pseudocode for the Microbenchmark

4.3.2 The Microbenchmark

The microbenchmark was developed especially for this task, because well known benchmarks like the
Pallas MPI benchmark do not fulfill the demands. The Pallas benchmark is very inflexible and performs
a big number of barrier operations and measures the mean time for this operation. The number of nodes
can be given by a starting value and a multiplier, which is not suitable for bigger node counts.

The newly developed benchmark utilizes the RDTSC time measurement mechanism as used in section
2.3.5 to measure the exact time also for a single barrier operation. The pseudocode is given in listing 4.1.
The first barrier ensures that all nodes enter the benchmark loop simultaneously.

4.3.3 The Application Abinit

�����$

����$

	

���
���������

	

���
����

���

�����$

�����$

�����$

����$

����$

��������

�
������

�
������

	����!#��

��
��

������

Figure 4.2: Abinit execution Time Allocation

Abinit was chosen to represent an application which wastes a reasonable amount of time for barrier
synchronization. All tests are black-box tests, which means that the same input file was used to measure
all times and the inner structure of the application has not been investigated. As shown in figure 4.2,
Abinit spends about 8% of its execution time inside the MPI library and about 65% of this time for
barrier synchronization. To determine if the time consumed by the barrier synchronization is caused by
the implementation or by an unbalanced application, the disposition of the time to the single nodes (8 in
this case) is shown in figure 4.3. One can see that the application is extremely unbalanced in Barrier2,
where all nodes wait inside the barrier for node00 to reach its call. Barrier1 is slightly unbalanced, node01
and node06 seem to reach the barrier call usually as last nodes and the others waste CPU time while
waiting for them. It is assumed that the execution time of Barrier1 can be enhanced. These facts show

Torsten Höfler Page 72/86

CHAPTER 4. PRACTICAL RESULTS AND CONCLUSION 4.4. MICROBENCHMARK RESULTS

���"�$

��"�$
�����$

�"���$

����"$

�����$
����$

�����$

�
������

 �!�""

 �!�"�

 �!�"�

 �!�"�

 �!�"�

 �!�"�

 �!�"�

 �!�"�

"�""$

�����$

�����$
�����$

�����$

�����$
�����$

�����$

�
������

 �!�""

 �!�"�

 �!�"�

 �!�"�

 �!�"�

 �!�"�

 �!�"�

 �!�"�

Figure 4.3: Abinit Barrier dispersion

that the overall application performance of Abinit can not be enhanced significantly with a better barrier
implementation. The benchmarks should only show a very small improvement.

4.4 Microbenchmark Results

4.4.1 Software Barrier

The benchmark results of the n-way dissemination algorithm on the CLiC are depicted in the left side of
figure 4.4. It shows that the 1-way dissemination barrier seems to be the best solution for this system.
This is due to the fact that Open MPI does not schedule small messages across several network links (all
are sent across the single low-latency connection). The right picture in figure 4.4 shows a comparison
between the original Open MPI barrier algorithm and the new implemented Swbarr.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 50 100 150 200 250

rt
 (

m
ill

is
ec

on
ds

)

Processors (p)

1-way
2-way
3-way
4-way

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250

rt
 (

m
ill

is
ec

on
ds

)

Processors (p)

Swbarr
Open MPI

Figure 4.4: Swbarr Microbenchmark Results

4.4.2 Hardware Barrier

The implemented Hwbarr connects four of the Oscar nodes and works only for MPI_COMM_WORLD. The
achieved results are constantly about 2.57µs. This is around five times faster than the best known
InfiniBandTM implementation and is assumed to remain constant also for bigger node-counts.

Torsten Höfler Page 73/86

CHAPTER 4. PRACTICAL RESULTS AND CONCLUSION 4.4. MICROBENCHMARK RESULTS

4.4.3 InfiniBandTM Barrier

Three different public domain MPI implementations which support InfiniBandTM have been compared
for their MPI_Barrier() latency with the n-way Dissemination Barrier. The three implementations are
namely:

• LAM-MPI 7.1.1

• MPICH2 0.9.6p2 (SHM+IBA device)

• MVAPICH 0.9.4

The results of the average barrier latency for 5000 consecutive runs on the Mozart cluster are shown in
figure 4.5. The left side shows all measured implementations and the right only the four best. The n-way
dissemination barrier is for n < 3 faster than today’s fastest published barrier algorithm in MVAPICH
(which also used RDMA Write). But the running time seems quite unpredictable, figure 4.6 shows in the
left side a comparison to the predicted values. The LoP model represents a lower border. Additionally,
it has to be mentioned that the n-way dissemination barrier falls back to a p-way dissemination barrier if
n > p! The prediction varies quite a lot for n = 1, but the deviation becomes smaller with increasing n,

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

av
er

ag
e

ru
nt

im
e

in
 m

ic
ro

se
co

nd
s

(r
t)

processors (P)

LAM-MPI
SHIBA

MVAPICH
IBBARR-1
IBBARR-2
IBBARR-3
IBBARR-4
IBBARR-6

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 10 20 30 40 50 60 70

av
er

ag
e

ru
nt

im
e

in
 m

ic
ro

se
co

nd
s

(r
t)

processors (P)

MVAPICH
IBBARR-1
IBBARR-2
IBBARR-3

Figure 4.5: Microbenchmark Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70

av
er

ag
e

ru
nt

im
e

in
 m

ic
ro

se
co

nd
s

(r
t)

processors (P)

IBBARR-1 (measured)
IBBARR-1 (predicted)

IBBARR-2 (measured)
IBBARR-2 (predicted)

IBBARR-3 (measured)
IBBARR-3 (predicted)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70

S
pe

ed
up

processors (P)

IBBARR-1
IBBARR-2
IBBARR-3

Figure 4.6: n-way dissemination measured and predicted running time

this can be explained with contention and synchronization effects which have been already described in
section 2.3.7.1.5. The difference between the RDMA barrier of MVAPICH [LMP03] and the 1 or 2-way
dissemination barriers increases with growing node numbers. The performance gain up to 40% for many
nodes relative to the fastest published implementation is shown in the right of figure 4.6. It is assumed
that the performance gain increases for more nodes. Further predictions cannot be made because the
memory contention effects of RDMA Write are not predictable (compare figure 2.33).

Torsten Höfler Page 74/86

CHAPTER 4. PRACTICAL RESULTS AND CONCLUSION 4.5. APPLICATION RESULTS

Table 4.1: Abinit Benchmark Results
Barrier Type Execution Time Speedup MPI Speedup
Open MPI 4:34 min 0% 0%
Ibbarr 4:30 min 1.45% 17.77%
Hwbarr 4:27 min 2.55% 31.17%

4.5 Application Results

The application results with abinit on four nodes are shown in table 4.1. The results are as expected, the
overall application running time is only slightly enhanced, but the MPI Time can be drastically reduced
with the usage of a constant time barrier. But this is not generalizable, because it is not recommended to
use barrier operations in high-performance applications. Thus most of these applications use no barrier
at all, or only once at startup or end.

4.6 Conclusion and Future Work

This thesis proposed different techniques to enhance the barrier operation for InfiniBandTM with or
without a specialized supporting network.

It was shown that a cheap constant time barrier, leveraging commodity components (parallel ports)
reaches a constant barrier latency (relative to the number of participated nodes) of approximately 2.5µs

and can be realized quite easy. Ideas for a high-performance implementation and the management of
barrier operations for InfiniBandTM switches have been developed and theoretically analyzed. Ideas to
improve the proof-of-concept barrier hardware are described in section 3.2.3 and could be implemented
to enhance the barrier latency for MPI applications.

A new InfiniBandTM barrier without additional hardware requirements has been implemented inside the
Open MPI framework leveraging the newly developed n-way dissemination algorithm. The average barrier
latency is up to 40% lower than the latency of the best known InfiniBandTM barrier implementation. It
can be assumed that this gap grows for a bigger number of nodes.

Additionally, a new communication model (called LoP) for 1:n and n:1 communications in offloading
based networks, based on the LogP model has been developed and parametrized for InfiniBandTM . A
new InfiniBandTM benchmark was developed to set parameters for the LoP model. It was proven that
this model provides at least lower bounds to all benchmarked values (the parametrization was done with
ideal values). The behavior of the model for the average case has to be analyzed further to achieve more
accurate predictions. The LogP model has been verified in its accuracy to model barrier algorithms for
underlying TCP/IP based Ethernet networks.

The current Open MPI barrier operation has been enhanced up to 22% with a fully parametrizeable
adaptive Coll component which benchmarks 6 different algorithms during the initialization of a new
communicator and chooses the fastest one. The newly developed n-way dissemination barrier could
be used more efficiently inside the Open MPI framework by providing a new PML component which
schedules also small messages to different network interfaces.

The author realized during this work that the need for collective communication is emergent and the
implementation of these so called ”collectives” can be enhanced on different levels. The future work,
based on this study will investigate the different collective operations in order to minimize their running
time and the system overhead.

Torsten Höfler Page 75/86

CHAPTER 4. PRACTICAL RESULTS AND CONCLUSION 4.7. ACKNOWLEDGMENTS

4.7 Acknowledgments

I want to thank my girlfriend and my family for providing the necessary social support for this thesis. I
was technically supported by my advisers Frank Mietke, Torsten Mehlan and Prof. Rehm. I also want
to thank Lavinio Cerquetti and Christian Siebert for many good and encouraging ideas. At last but not
least, I received the necessary mathematical support to assess the equations for the LoP model from Prof.
Junghanns, Prof. Spellucci and Dr. Sven Beuchler.

Torsten Höfler Page 76/86

Appendix

A.1 List of Links

MPI Forum - http://www.mpi-forum.org . 2

MPICH - http://www-unix.mcs.anl.gov/mpi/mpich . 3

LAM/MPI - http://www.lam-mpi.org . 3

Open MPI - http://www.open-mpi.org . 3

FT-MPI - http://icl.cs.utk.edu/ftmpi . 3

LA-MPI - http://public.lanl.gov/lampi . 3

LAM/MPI - http://www.lam-mpi.org . 3

PACX-MPI - http://www.hlrs.de/organization/pds/projects/pacx-mpi 3

IBTA - http://www.infinibandta.org . 3

Mellanox - http://www.mellanox.com . 3

OpenIB - http://www.openib.org . 7

Optimization Software - http://plato.la.asu.edu/topics/problems/nlolsq.html 54

HLRS - http://www.hlrs.de . 71

A.2 List of Figures

1.1 Hardware Queuing . 5

1.2 Reliable Connection . 6

1.3 Unreliable Connection . 7

1.4 Open MPI Architecture . 9

1.5 A Components Lifecycle . 9

2.1 Visualization of the LogP parameters . 14

2.2 The ideal interconnect graph connecting 4 nodes . 16

2.3 A crossbar example connecting 4 nodes . 16

2.4 A Central Counter barrier between 6 nodes . 18

http://www.mpi-forum.org
http://www-unixdiscretionary {-}{}{}.mcsdiscretionary {-}{}{}.anldiscretionary {-}{}{}.govdiscretionary {-}{}{}/mpidiscretionary {-}{}{}/mpich
http://wwwdiscretionary {-}{}{}.lam-mpidiscretionary {-}{}{}.org
http://www.open-mpi.org
http://icldiscretionary {-}{}{}.csdiscretionary {-}{}{}.utkdiscretionary {-}{}{}.edu/ftmpi
http://publicdiscretionary {-}{}{}.lanldiscretionary {-}{}{}.govdiscretionary {-}{}{}/lampi
http://wwwdiscretionary {-}{}{}.lam-mpidiscretionary {-}{}{}.org
http://wwwdiscretionary {-}{}{}.hlrsdiscretionary {-}{}{}.dediscretionary {-}{}{}/organizationdiscretionary {-}{}{}/pdsdiscretionary {-}{}{}/projectsdiscretionary {-}{}{}/pacx-mpi
http://www.infinibandta.org
http://www.mellanox.com
http://www.openib.org
http://plato.la.asu.edu/topics/problems/nlolsq.html
http://www.hlrs.de

A.2. LIST OF FIGURES

2.5 A combining tree barrier between 6 nodes . 20

2.6 Example for the tournament barrier with 6 nodes . 22

2.7 Example for the 4-way tournament algorithm between 6 nodes 24

2.8 Example of the MCS Tree algorithm between 6 nodes . 24

2.9 Example for building a binomial tree . 26

2.10 A numbered binomial tree with 6 nodes (each processor is assigned to one tree node) . . . 26

2.11 The Butterfly algorithm - the shared array was left out to improve the clearness 28

2.12 Example for the pairwise exchange algorithm between 6 nodes 29

2.13 Dissemination Barrier with 6 processors . 31

2.14 Central Counter . 34

2.15 LogP model for Combining Tree and Binomial Broadcast (n = 3) 35

2.16 Measured rt Values . 36

2.17 LogP for the Tournament Barrier . 36

2.18 Tournament Barrier . 37

2.19 LogP for the Dissemination Barrier . 37

2.20 Dissemination Barrier . 38

2.21 Comparison of all Barrier Algorithms . 38

2.22 Example of the 2-way Dissemination Barrier . 39

2.23 LogP Analysis of the 2-way Dissemination Barrier . 40

2.24 Example of a 2-wise Exchange barrier . 42

2.25 LogP Analysis of the 2-wise Exchange Barrier . 42

2.26 Binomial Discovery Tree for a fan-out of 2 . 44

2.27 A new Model of InfiniBandTM . 46

2.28 A Possible LoP Benchmark . 47

2.29 The RTT Model . 53

2.30 The Overhead Model . 53

2.31 Minimal and Average Send/Receive RTT Times . 54

2.32 SR and RR Times . 55

2.33 Minimal and Average RDMA Write RTT Times . 55

2.34 RDMA os overhead . 56

2.35 RDMA Write and Send/Receive comparison . 57

2.36 Average and minimal L(p) for RDMA and Send . 58

2.37 LoP for the Central Counter . 59

2.38 Minimal LoP Predictions for RDMA-Write inline (left: cnt = 2, right: cnt = 5000) 60

2.39 Round-count and appropriate predicted run time of the n-way Dissemination Barrier . . . 60

3.1 Barrier Logic inside the Crossbar . 63

3.2 Bit Array in the Barrier Logic (I = 4, N = 8) . 63

Torsten Höfler Page 78/86

A.3. LIST OF LISTINGS

3.3 Bit Array Operation (I = 2, N = 4) . 64

3.4 Barrier Packet Format . 65

3.5 Parallel Port Pin Assignment (back side) . 66

3.6 Two-state machine to implement the Barrier . 67

4.1 Altera Development Board . 70

4.2 Abinit execution Time Allocation . 72

4.3 Abinit Barrier dispersion . 73

4.4 Swbarr Microbenchmark Results . 73

4.5 Microbenchmark Results . 74

4.6 n-way dissemination measured and predicted running time 74

A.3 List of Listings

1.1 MPI 1.1 goals . 2

1.2 InfiniBandTM Features . 4

1.3 Available Open MPI Component Frameworks . 8

2.4 The four parameters of the LogP model . 14

2.5 Additional assumptions in the LogP model . 14

2.6 Interconnect characteristics . 16

2.7 Modeled Communication Techniques . 45

2.8 Send/Receive Scenarios . 46

2.9 LoP Parameter Measuring . 47

2.10 Structure of the LoP benchmark . 48

2.11 Assumptions to the benchmark pseudocode . 48

A.4 List of Pseudocode-Listings

2.1 Central Counter in Pseudocode . 19

2.2 Pseudocode for Combining Tree Algorithm . 21

2.3 Pseudo Code for Tournament Barrier . 23

2.4 Example of the MCS Tree algorithm between 6 nodes . 25

2.5 Pseudocode for BST Barrier . 27

2.6 Pseudocode for the pairwise exchange barrier . 30

2.7 Pseudocode for the Dissemination Barrier . 31

2.8 Pseudocode for the n-way Dissemination Barrier . 40

2.9 Pseudocode for the n-wise Exchange Barrier . 43

2.10 Pseudocode of the LoP benchmark - preparation . 49

2.11 Pseudocode of the LoP benchmark - scenario 1 . 50

Torsten Höfler Page 79/86

A.5. LIST OF TABLES

2.12 Pseudocode of the LoP benchmark - scenario 2 . 51

3.1 Accessing the Port in C . 67

4.1 Pseudocode for the Microbenchmark . 72

A.5 List of Tables

1.1 InfiniBandTM Service Types . 6

2.1 Summary Table . 32

2.2 Results for big Numbers of Processors . 38

2.3 Peer Hosts for the 2-way Dissemination . 39

3.1 Barrier Protocol Encoding . 65

4.1 Abinit Benchmark Results . 75

A.6 Glossary

ACK Acknowledgement . 6

API Application Programming Interface . 7

BSP Bulk Synchronous Protocol .13

CPU Central Processing Unit . 14

CQ Completion Queue . 4

DMA Direct Memory Access . 6

EVAPI Extended Verbs API . 7

GID Global Identification (Number) . 5

HCA Host Channel Adapter . 3

HPC High Performance Computing . 1

HTX HypterTransportTMExpansion . 3

IBA InfiniBand Architecture . 3

IBTA InfiniBand Trade Association . 3

IPv6 Internet Protocol Version 6 . 5

LID Local Identification (Number) . 5

MIMD Multiple Instruction Multiple Data . 12

MPI Message Passing Interface . 1

NIC Network Interface Card . 14

PCI-Express Periphal Component Interconnect Express . 3

PCI-X Periphal Component Interconnect Extended . 3

PD Protection Domain . 7

PRAM Parallel Random Access Machine . 12

Torsten Höfler Page 80/86

A.6. GLOSSARY

PVM Parallel Virtual Machine .2

QoS Quality of Service . 4

QP Queue Pair . 4

RAM Random Access Machine . 12

RC Relieable Connection . 6

RD Relieable Datagram . 6

RDMA Remote Direct Memory Access . 4

RQ Receive Queue . 4

RQE Receive Queue Entry . 5

RR Receive Request . 4

RST Reset QP Reset state . 7

RTR Ready to Receive QP Ready to Receive state .7

RTS Ready to Send QP Ready to Send state . 7

SF-IBAL Sourceforge InfiniBand Access Layer . 7

SLOC Source Lines of Code . 47

SQ Send Queue . 4

SQE Send Queue Entry . 6

SR Send Request . 4

TCA Target Channel Adapter . 3

TCP/IP Transmission Control Protocol/Internet Protocol .5

UC Unrelieable Connection . 6

UD Unrelieable Datagram . 6

VAPI Verbs API . 7

WQ Work Queue . 4

WR Work Request .4

Torsten Höfler Page 81/86

A.7. REFERENCES

A.7 References

[ABP92] John B. Andrew, Carl J. Beckmann, and David K. Poulsen. Notification and multicast
networks for synchronization and coherence. J. Parallel Distrib. Comput., 15(4):332–350,
1992.

[ACS89] A. Aggarwal, A. Chandra, and M. Snir. On Communications Latency in PRAM Computa-
tions. In Proceedings of the 1st Symp. on Parallel Algorithms and Architectures, pages 11–21,
1989.

[ACS90] A. Aggarwal, A. Chandra, and M. Snir. Communications Complexity of PRAMs. Theoretical
Computer Science, 71:3-28, pages 3–28, 1990.

[Aga91] A. Agarwal. Limits on Interconnection Network Performance. IEEE Transactions on Parallel
and Distributed Systems, 2(4):398–412, 1991.

[AISS95] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman. LogGP:
Incorporating Long Messages into the LogP Model. Journal of Parallel and Distributed
Computing, 44(1):71–79, 1995.

[Amd00] Gene M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. pages 79–81, 2000.

[BHP96] G. Bilardi, K. T. Herley, and A. Pietracaprina. BSP vs LogP. In SPAA ’96: Proceedings
of the eighth annual ACM symposium on Parallel algorithms and architectures, pages 25–32.
ACM Press, 1996.

[Ble87] G. Blelloch. Scans as Primitive Operations. In Proc. of the International Conference on
Parallel Processing, pages 355–362, August 1987.

[BP91] Carl J. Beckmann and Constantine D. Polychronopoulos. Broadcast networks for fast syn-
chronization. In ICPP (1), pages 220–224, 1991.

[Bro86] Eugene D. Brooks. The Butterfly Barrier. International Journal of Parallel Programming,
15(4):295–307, 1986.

[CDS94] William E. Cohen, Henry G. Dietz, and J. B. Sponaugle. Dynamic barrier architecture for
multi-mode fine grain parallelism using conventional processors. In ICPP, pages 93–96, 1994.

[CKP+93] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice
Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: towards a realistic model of
parallel computation. In Principles Practice of Parallel Programming, pages 1–12, 1993.

[CLMY96] David Culler, Lok Tin Liu, Richard P. Martin, and Chad Yoshikawa. LogP Performance
Assessment of Fast Network Interfaces. IEEE Micro, February 1996.

[CZ89] R. Cole and O. Zajicek. The APRAM: Incorporating Asynchrony into the PRAM Model.
In SPAA ’89: Proceedings of the first annual ACM symposium on Parallel algorithms and
architectures, pages 169–178. ACM Press, 1989.

[DCMM95] H. G. Dietz, T. M. Chung, T. I. Mattox, and T. Muhammad. Purdue’s Adapter for Parallel
Execution and Rapid Synchronization: The TTL PAPERS Design. Technical Report, Purdue
University School of Electrical Engineering, 1995.

[DHM96] Henry G. Dietz, Raymond Hoare, and Timothy Mattox. A fine-grain parallel architecture
based on barrier synchronization. In ICPP, Vol. 1, pages 247–250, 1996.

[EM04] L. A. Estefanel and G. Mounie. Fast Tuning of Intra-Cluster Collective Communications. In
Recent Advances in Parallel Virtual Machine and Message Passing Interface: 11th European
PVM/MPI Users Group Meeting Budapest, Hungary, September 19 - 22, 2004. Proceedings,
2004.

[FG91] Eric Freudenthal and Allan Gottlieb. Process Coordination with Fetch-and-Increment. In
ASPLOS-IV: Proceedings of the fourth international conference on Architectural support for
programming languages and operating systems, pages 260–268. ACM Press, 1991.

Torsten Höfler Page 82/86

A.7. REFERENCES

[For95] Message Passing Interface Forum. MPI: A Message Passing Interface Standard. www.mpi-
forum.org, 1995.

[FW78a] S. Fortune and J. Wyllie. Parallelism in random access machines. In STOC ’78: Proceedings
of the tenth annual ACM symposium on Theory of computing, pages 114–118. ACM Press,
1978.

[FW78b] Steven Fortune and James Wyllie. Parallelism in random access machines. In STOC ’78:
Proceedings of the tenth annual ACM symposium on Theory of computing, pages 114–118.
ACM Press, 1978.

[GFB+04] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jef-
frey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine,
Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open
MPI: Goals, Concept, and Design of a Next Generation MPI Implementation. In Proceedings,
11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004.

[GGK+98] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry Rudolph, and
Marc Snir. The nyu ultracomputer: designing a mimd, shared-memory parallel machine. In
ISCA ’98: 25 years of the international symposia on Computer architecture (selected papers),
pages 239–254. ACM Press, 1998.

[Gib89] P. Gibbons. A More Practical PRAM Model. In SPAA ’89: Proceedings of the first annual
ACM symposium on Parallel algorithms and architectures, pages 158–168. ACM Press, 1989.

[GMR97] P. G. Gibbons, Y. Matias, and V. Ramachandran. Can a shared memory model serve as a
bridging model for parallel computation? In ACM Symposium on Parallel Algorithms and
Architectures, pages 72–83, 1997.

[GTNP02] Rinka Gupta, Vinod Tipparaju, Jare Nieplocha, and Dhabaleswar Panda. Efficient Barrier
using Remote Memory Operations on VIA-Based Clusters. In 2002 IEEE International
Conference on Cluster Computing (CLUSTER 2002), page 83. IEEE Computer Society,
2002.

[GV94] Dirk Grunwald and Suvas Vajracharya. Efficient Barriers for Distributed Shared Memory
Computers. In Proceedings of the 8th International Symposium on Parallel Processing, pages
604–608. IEEE Computer Society, 1994.

[GVW89] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient Synchronization Prim-
itives for Large-Scale Cache-Coherent Multiprocessors. SIGARCH Comput. Archit. News,
17(2):64–75, 1989.

[Ham96] Susanne E. Hambrusch. Models for parallel computation. In ICPP Workshop, pages 92–95,
1996.

[HFM88] Debra Hengsen, Raphael Finkel, and Udi Manber. Two Algorithms for Barrier Synchroniza-
tion. Int. J. Parallel Program., 17(1):1–17, 1988.

[HK94] Susanne E. Hambrusch and Asfaq A. Khokhar. An architecture-independent model for coarse
grained parallel machines. In Proceedings of the 6-th IEEE Symposium on Parallel and
Distributed Processing, 1994.

[HMMR04] Torsten Hoefler, Torsten Mehlan, Frank Mietke, and Wolfgang Rehm. A Survey of Bar-
rier Algorithms in the Context of the LogP Model and Proof of Optimality. Chemnitzer
Informatik Berichte - CSR-04-03, 2004.

[IBA] Infiniband Architecture Specification Volume 1, Release 1.2.

[IFH01] Fumihiko Ino, Noriyuki Fujimoto, and Kenichi Hagihara. LogGPS: A Parallel Computa-
tional Model for Synchronization Analysis. In PPoPP ’01: Proceedings of the eighth ACM
SIGPLAN symposium on Principles and practices of parallel programming, pages 133–142.
ACM Press, 2001.

[KHB+99] Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and Raoul A. F. Bhoed-
jang. Magpie: Mpi’s collective communication operations for clustered wide area systems.

Torsten Höfler Page 83/86

A.7. REFERENCES

In PPoPP ’99: Proceedings of the seventh ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 131–140. ACM Press, 1999.

[KR90] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In
J.van Leeuwen, editor, Handbook of Theoretical Computer Science: Volume A: Algorithms
and Complexity, pages 869–941. Elsevier, Amsterdam, 1990.

[KS93] R. E. Kessler and J. L. Scwarzmeier. Cray t3d: A new dimension in cray research. In
COMPCON, pages 176–182, 1993.

[LAD+96] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N.
Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St Pierre,
David S. Wells, Monica C. Wong-Chan, Shaw-Wen Yang, and Robert Zak. The network ar-
chitecture of the Connection Machine CM-5. Journal of Parallel and Distributed Computing,
33(2):145–158, 1996.

[LCW93] James R. Larus, Satish Chandra, and David A. Wood. CICO: A Practical Shared-Memory
Programming Performance Model. In Ferrante and Hey, editors, Workshop on Portability
and Performance for Parallel Processing, Southampton University, England, July 13 – 15,
1993. John Wiley & Sons.

[Lei92] F. Thomson Leighton. Introduction to parallel algorithms and architectures: array, trees,
hypercubes. Morgan Kaufmann Publishers Inc., 1992.

[LJW+04] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp, and B. Too-
nen. Design and Implementation of MPICH2 over InfiniBand with RDMA Support. In Int’l
Parallel and Distributed Processing Symposium, Proceedings, 2004.

[LM88] C. Leiserson and B. Maggs. Communication-Efficient Parallel Algorithms for Distributed
Random-Access Machines. Algorithmica, 3:53–77, 1988.

[LMP03] J. Liu, A. Mamidala, and D. Panda. Fast and scalable mpi-level broadcast using infiniband’s
hardware multicast support, 2003.

[LRWW98] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright. Convergence
properties of the nelder–mead simplex method in low dimensions. SIAM J. on Optimization,
9(1):112–147, 1998.

[LWP04] J. Liu, J. Wu, and D. K. Panda. High Performance RDMA-Based MPI Implementation over
InfiniBand. Int’l Journal of Parallel Programming, 2004, 2004.

[LZ95] Welf Löwe and Wolf Zimmermann. Upper Time Bounds for Executing PRAM-Programs on
the LogP-Machine. In ICS ’95: Proceedings of the 9th international conference on Super-
computing, pages 41–50. ACM Press, 1995.

[MCS91a] John Mellor-Crummey and Michael Scott. Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65,
1991.

[MCS91b] John M. Mellor-Crummey and Michael L. Scott. Synchronization without contention.
SIGARCH Comput. Archit. News, 19(2):269–278, 1991.

[MF01] C. A. Moritz and M. I. Frank. LoGPC: Modelling Network Contention in Message-Passing
Programs. IEEE Transactions on Parallel and Distributed Systems, 12(4):404, 2001.

[MMT95] B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of Parallel Computation: A
Survey and Synthesis. In Proceedings of the 28th Hawaii International Conference on System
Sciences (HICSS), volume 2, pages 61–70, 1995.

[MV84] K. Mehlhorn and U. Vishkin. Randomized and Deterministic Simulations of PRAMs by
Parallel Machines with Restricted Granularity of Parallel Memory. Acta Inf., 21(4):339–374,
1984.

[OD89] M. O’Keefe and H. Dietz. Performance analysis of hardware barrier synchronization. Tech.
Rep., 89(51), 1989.

Torsten Höfler Page 84/86

A.7. REFERENCES

[Pal00] Pallas GmbH. Pallas MPI Benchmarks - PMB, Part MPI-1. Technical report, Pallas GmbH,
2000.

[Pan] Dhabaleswar K. Panda. Fast barrier synchronization in wormhole k-ary n-cube networks
with multidestination worms. pages 200–209.

[PN85] Gregory F. Pfister and V. Alan Norton. ”hot spot” contention and combining in multistage
interconnection networks. In ICPP, pages 790–797, 1985.

[Rab00] Rolf Rabenseifner. Automatic mpi counter profiling. In 42nd CUG Conference, CUG Summit
2000, 2000.

[Sco96] Steven L. Scott. Synchronization and Communication in the T3E Multiprocessor. In Archi-
tectural Support for Programming Languages and Operating Systems, pages 26–36, 1996.

[SL04] Jeffrey M. Squyres and Andrew Lumsdaine. The Component Architecture of Open MPI:
Enabling Third-Party Collective Algorithms. In Proceedings, 18th ACM International Con-
ference on Supercomputing, Workshop on Component Models and Systems for Grid Applica-
tions, St. Malo, France, July 2004.

[SMC94] Michael L. Scott and John M. Mellor-Crummey. Fast, contention-free combining tree barriers
for shared-memory multiprocessors. Int. J. Parallel Program., 22(4):449–481, 1994.

[SSP97] Rajeev Sivaram, Craig B. Stunkel, and Dhabaleswar K. Panda. A reliable hardware barrier
synchronization scheme. In 11th International Parallel Processing Symposium (IPPS ’97),
1-5 April 1997, Geneva, Switzerland, Proceedings, pages 274–280. IEEE Computer Society,
1997.

[TK97] Nian-Feng Tzeng and Angkul Kongmunvattana. Distributed Shared Memory Systems with
Improved Barrier Synchronization and Data Transfer. In ICS ’97: Proceedings of the 11th
international conference on Supercomputing, pages 148–155. ACM Press, 1997.

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111,
1990.

[vN45] J. von Neumann. First draft of a report on the edvac. Technical report, University of
Pennsylvania, 1945. The report that got von Neumann’s name associated with the serial,
stored-program, general purpose, digital architecture upon which 99.99% of all computers
today are based.

[YBGP04] Weikuan Yu, Darius Buntinas, Rich L. Graham, and Dhabaleswar K. Panda. Efficient and
scalable barrier over quadrics and myrinet with a new nic-based collective message pass-
ing protocol. In 18th International Parallel and Distributed Processing Symposium (IPDPS
2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004, Santa Fe, New Mexico, USA,
2004.

[YTL87] P.C. Yew, N.F. Tzeng, and D.H. Lawrie. Distributing Hot Spot Addressing in Large Scale
Multiprocessors. IEEE Trans. Comput., 36(4):388–395, 1987.

Torsten Höfler Page 85/86

A.8. THESES

A.8 Theses

I Open MPI offers an extensible framework which is very suitable for implementing new MPI collective
algorithms.

II Currently published MPI Barrier implementations do not consider the architectural specialties of
InfiniBandTM and can be enhanced further.

III The LogP model is only accurate for a big number of messages within the InfiniBandTM network

IV The LoP model is more accurate than the LogP model and can be simplified without loosing this
advantage.

V Abstract programming models like the PRAM, BSP, C3 and their modifications are not suitable
for the derivation of optimal MPI collective algorithms.

VI The newly developed n-way Dissemination algorithm is the only published barrier algorithm which
performs optimal on networks offering hardware parallelism.

VII The LoP model can be used to enhance other MPI collective algorithms which uses small messages
for communication.

VIII A constant time barrier inside the InfiniBandTM network is achievable with hardware support
integrated into the switches.

IX A constant time barrier can be built by leveraging commodity components and a cheap external
network.

X Most application run times (e.g. abinit) suffer much more from unbalanced implementations than
from barrier latencies.

Torsten Höfler Page 86/86

	1 Introduction
	1.1 Organization/Structure of the Document
	1.2 MPI Standard
	1.2.1 The MPI_Barrier() Call
	1.2.2 Available MPI Implementations

	1.3 InfiniBand™
	1.3.1 InfiniBand™ Architecture
	1.3.2 Hardware Queuing
	1.3.3 Connection Management
	1.3.4 Options for Message Passing
	1.3.5 Interacting with the HCA

	1.4 Open MPI
	1.4.1 Component Framework
	1.4.2 A Components Lifecycle

	1.5 Summary

	2 Software Solution
	2.1 Models for Parallel Computation
	2.1.1 Introduction
	2.1.2 Related Work
	2.1.3 Organization
	2.1.4 Characterization of available Models

	2.2 Barrier Algorithms
	2.2.1 Algorithms Performing Phase 3
	2.2.2 Algorithms Omitting Phase 3
	2.2.3 Summary of Algorithms
	2.2.4 Proof of Optimality
	2.2.5 Evaluating the LogP Predictions for TCP/IP
	2.2.6 Two new Algorithms for Barrier Synchronization

	2.3 Proposal of a Model for InfiniBand™
	2.3.1 Message Passing Options
	2.3.2 The HCA Processor
	2.3.3 Hardware Parallelism
	2.3.4 Measuring the Parameters
	2.3.5 A Benchmark of the LoP Model
	2.3.6 Benchmark Results
	2.3.7 Choosing the Optimal Solution to the Problem

	2.4 Summary

	3 Hardware Solution
	3.1 Barrier Support in the Data Network
	3.1.1 Single Switch

	3.2 Barrier Support in a dedicated Network
	3.2.1 Proof of Concept Design
	3.2.2 Runtime and Scalability
	3.2.3 Further Ideas

	3.3 Summary

	4 Practical Results and Conclusion
	4.1 Implementation
	4.1.1 Software Barrier
	4.1.2 Hardware Barrier
	4.1.3 InfiniBand™ Barrier

	4.2 Benchmark Environment
	4.2.1 Mozart
	4.2.2 CLiC
	4.2.3 Oscar

	4.3 Benchmark Applications
	4.3.1 Expected Results
	4.3.2 The Microbenchmark
	4.3.3 The Application Abinit

	4.4 Microbenchmark Results
	4.4.1 Software Barrier
	4.4.2 Hardware Barrier
	4.4.3 InfiniBand™ Barrier

	4.5 Application Results
	4.6 Conclusion and Future Work
	4.7 Acknowledgments

	A Appendix
	A.1 List of Links
	A.2 List of Figures
	A.3 List of Listings
	A.4 List of Pseudocode-Listings
	A.5 List of Tables
	A.6 Glossary
	A.7 References
	A.8 Theses

